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Data breaches in the cloud

Figure 1: Rise of data breaches in the cloud [3]
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FHE allows secure cloud computations
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Figure 2: Usage of cloud storage - always encrypted
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FHE allows secure cloud computations
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Figure 2: Usage of traditional cloud computing - unencrypted
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FHE allows secure cloud computations

m1, m2
mi = Dec(ci)
m1 ∗m2
Enc(m1 ∗m2)

Client
Cloud

ci = Enc(mi)

Enc(m1 ∗m2)

Traditional Cloud Computing

Dec(Enc(m1 ∗m2)) = m1 ∗m2

m1, m2 c1 ⋆ c2

Client Cloudci = Enc(mi)

c1 ⋆ c2

FHE Setting

Dec(c1 ⋆ c2) = m1 ∗m2

Figure 2: Usage of FHE in the public cloud - always encrypted
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Functional completeness

Theorem (Functional Complete
Set)
The ability to evaluate any
function homomorphically is
achievable if addition and
multiplication can be performed
homomorphically and can be
iterated, since they constitute a
functionally complete set over
finite rings.

A

B

C
Y

Figure 3: Example Circuit with XOR
and AND
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Procedures in (correct) HE schemes

Table 1: Algorithms and keys of HE
vs. classic encryption

classic encryption homomorphic encryption

keys
SK • •
PK • •
EK ◦ •

procedure

KeyGen • •
Enc • •
Dec • •
Eval ◦ •

Refresh ◦ •

Definition ((correct) Eval)
Eval(EK, f , c)→ c ′

Correctness
We assume correctness here. Formally correct the Eval function just
returns a ciphertext c ′.
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Procedures in (correct) HE schemes

Table 1: Algorithms and keys of HE
vs. classic encryption

classic encryption homomorphic encryption

keys
SK • •
PK • •
EK ◦ •

procedure

KeyGen • •
Enc • •
Dec • •
Eval ◦ •

Refresh ◦ •

Definition ((correct) Eval)
Eval(EK, f , c)→ c ′

Dec(c ′) = Dec[Eval(EK, f , c)] = f (m).

Definition (Refresh)
Refresh(EK, c, flag)→ c ′:

noise(c ′) < noise(c)

Correctness
We assume correctness here. Formally correct the Eval function just
returns a ciphertext c ′.
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Properties of FHE
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Figure 4: Classification of FHE

▶ efficient: run in polynomial
time in relation to the
security parameter λ

▶ secure: IND-CPA secure
▶ C : allowed binary circuits
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Figure 4: Classification of FHE

▶ correct:
▶ decrypt the encryption of

a message without any
error

▶ for all functions f ∈ C , it
can correctly decrypt the
results of the evaluation of
f over fresh ciphertexts
with overwhelming
probability
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▶ compact: the output of the
Eval function is not bigger
than p(λ) bits, independent
of the complexity of the
evaluated function f

▶ Max depth of function is d
▶ Length of Eval output is

independant of d



6/29

Properties of FHE

efficient

secure

C = {allowed binary circuits}

C-homomorphic encryption scheme

Correct = correct decryption and evaluation

Somewhat Homomorphic Encryption (SHE)

Compact

Max depth of function is d

Length of Eval output is independant of d

Levelled Homomorphic Encryption (LHE)

C = {all binary circuits}

Levelled fully homomorphic

Fully Homomorphic Encryption (FHE)

i-
h
op

cl
as
si
fi
ca
ti
on

Figure 4: Classification of FHE

Remark (i-hop correctness)
Evaluating an arbitrary function is
not equal to consecutively
evaluating arbitrary many
functions.

f (. . . (f (m))) := Fn(m) → Eval(EK, Fn)✓

Eval (EK, f (. . . (Eval(EK, f )))) → E



7/29

Notes on classification

Definition (Circuit Privacy)
A C -homomorphic encryption
scheme is (perfectly, statistically
or computationally) circuit private
if D1 = Eval(EK, f , c) and
D2 = Enc(PK, f (m)) are
(perfectly, . . . ) indistinguishable.

Table 2: Circuit Privacy vs. Function
Privacy

Privacy Distributions of . . . are the same

Circuit Eval output of f1 fresh ciphertexts
Function Eval output of f1 Eval output of f2
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Notes on classification

Definition (Circuit Privacy)
A C -homomorphic encryption
scheme is (perfectly, statistically
or computationally) circuit private
if D1 = Eval(EK, f , c) and
D2 = Enc(PK, f (m)) are
(perfectly, . . . ) indistinguishable.

Table 2: Circuit Privacy vs. Function
Privacy

Privacy Distributions of . . . are the same

Circuit Eval output of f1 fresh ciphertexts
Function Eval output of f1 Eval output of f2

FHE does not hide the structure
of ML models
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FHE generations
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Figure 5: Timeline of the main FHE schemes.
■ Schemes based on ideal lattices, ■ Schemes based on AGCD,
■ Schemes based on LWE and RLWE 1
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FHE generations

Table 3: Comparison of FHE generations

SCHEMES 2nd Generation 3rd Generation 4th Generation
BGV BFV TFHE CKKS

Integer Arithmetic Bitwise operations Real Number Arithmetic

FAST OPERATIONS
scalar mult • • •
arithmetic • • •
non-arithmetic ◦ • ◦

PROPERTIES
fast bootstrapping ◦ • •2
fast packing/ batching/ SIMD • ◦ •
levelled design • • •

PROS fast scalar multiplication number comparison polynomial approx.
linear functions - multiplicative inverse

efficient - boolean circuits DFT, logistic regression

CONS slow non-linear functions - slow non-linear functions

USAGE large arrays of numbers bit-wise operations real numbers arithmetic

2CKKS has a fast amortized bootstrapping procedure.



10/29

From SHE to FHE

Noise reducing techniques
noise growth → Refresh procedure needed
▶ bootstrapping
▶ key-switching

▶ re-linearization
▶ modulus switching
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From SHE to FHE

Figure 6: Illustration of the bootstrapping technique by Marcolla et al. [1]
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Security

choose random m ∈ {0, 1}
c = Enc(m)

adversary oracle
c

¤PK
¤EK

¤EK,
¤PK,
¤SK

Figure 7: IND-CPA Security

Definition (IND-CPA Security)
The scheme is IND-CPA secure if
for an efficient adversary A, it
holds that:

Pr [A (PK, EK, EncPK(0)) = 1]−
Pr [A (PK, EK, EncPK(1)) = 1] = negl(λ)

where
(SK, PK, EK)← KeyGen(λ).
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Security

choose mi Enc(mi , PK) = ci

adversary oracle

ask for Enc(mi)

ci

¤PK
¤EK

¤EK,
¤PK,
¤SK

Figure 7: IND-CPA Security
repeat p(λ) times

Definition (IND-CPA Security)
The scheme is IND-CPA secure if
for an efficient adversary A, it
holds that:

Pr [A (PK, EK, EncPK(0)) = 1]−
Pr [A (PK, EK, EncPK(1)) = 1] = negl(λ)

where
(SK, PK, EK)← KeyGen(λ).
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Security

choose mi Enc(mi , PK) = ci

adversary oracle

ask for Enc(mi)

ci

¤PK
¤EK

¤EK,
¤PK,
¤SKguess m

Figure 7: IND-CPA Security

Definition (IND-CPA Security)
The scheme is IND-CPA secure if
for an efficient adversary A, it
holds that:

Pr [A (PK, EK, EncPK(0)) = 1]−
Pr [A (PK, EK, EncPK(1)) = 1] = negl(λ)

where
(SK, PK, EK)← KeyGen(λ).
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Security

Theorem
IND-CPA security is only achievable if the encryption scheme
randomizes ciphertexts.

Proof.

choose random m ∈ {0, 1}

adversary oraclec = Enc(m)

ask for c0 = Enc(0), c1 = Enc(1)

c0, c1

¤PK
¤EK

¤EK,
¤PK,
¤SK

Figure 8: IND-CPA Security is only achievable with randomization
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Theorem
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Security

Theorem
By their design, HE schemes can not achieve indistinguishability
under adaptive chosen ciphertext attack (IND-CCA2) security.

Proof.

choose random m′

c ′ = Enc(m′)
c = c ⊕ c ′

choose random m

adversary oraclec = Enc(m)

ask for Dec(c)

¤PK
¤EK

¤EK,
¤PK,
¤SK

Figure 9: IND-CCA2 Security is not achievable
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Security

Theorem
By their design, HE schemes can not achieve indistinguishability
under adaptive chosen ciphertext attack (IND-CCA2) security.

Proof.

m = Dec(c)
= Dec(c) + Dec(c ′)
= Dec(c) + m′

m = m + m′

adversary oraclec = Enc(m)

ask for Dec(c)

m
¤PK
¤EK

¤EK,
¤PK,
¤SKknows m

Figure 9: IND-CCA2 Security is not achievable
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Security: malicious adversary

data owner,
model owner

���f(D)
g(D)

Client
Cloud

µD, f

µg(D)¤SK

¤PK
¤EK, ¤PK

Figure 10: Malicious adversaries are a
problem

Possible solutions
▶ known evaluation results
▶ statistics
▶ Trusted Execution

Environments
▶ homomorphic hashes
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Additional Notes on Security

The security of FHE
▶ is based on LWE/ RLWE,
▶ is considered quantum safe,
▶ can be implemented leakage

resilient,
▶ can be circuit/ function

private,
▶ allows key evolution,
▶ and no decryption is needed

for outsourcing
computations.

Table 4: Circular Security vs. KDM
Security

circular security KDM

Enc(PK, SK) Enc(PK2, SK1)
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Limitations

Table 5: Main limitations of FHE and their
solution

Limitation potential solution

computational overhead Hardware acceleration and
better packing techniques

lack of standardization Homomorphic Encryption Standard and
stable open source libraries

hard to use High level compilers like HElayers

Table 6: Running times of
multiplying 2 bits
homomorphically [2]

Year runtime speedup speedup per year

2009 30 min - -
2014 2000 ns 9 · 108 18 · 107

2020 100 ns 20 3.33
. . . Hardware Acceleration . . .

2024 0.1 ns 1000 250
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Limitations

Table 5: Main limitations of FHE and their
solution

Limitation potential solution

computational overhead Hardware acceleration and
better packing techniques

lack of standardization Homomorphic Encryption Standard and
stable open source libraries

hard to use High level compilers like HElayers

Industry:
1. Microsoft
2. Samsung SDS
3. Intel
4. Duality Technologies
5. IBM
6. Google
7. SAP
8. . . .

Government:
1. NIST
2. SLAC National

Accelerator Lab
3. United Nations / ITU
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Limitations

Table 5: Main limitations of FHE and their
solution

Limitation potential solution

computational overhead Hardware acceleration and
better packing techniques

lack of standardization Homomorphic Encryption Standard and
stable open source libraries

hard to use High level compilers like HElayers

Compilers adress
engineering challenges
▶ parameter selection
▶ plaintext encoding
▶ data-independent

execution
▶ ciphertext

maintenance
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Beyond Homomorphic Encryption

FHE MPC TEE

no communication • ◦ •
no computational overhead ◦ • •
no known attacks • • ◦
security based on LWE, RLWE protocols hardware

Figure 11: Simplified comparison of FHE, MPC and TEE. MPC has a large
communication overhead, FHE is computational expensive and TEEs are
often proven to be vulnerable against side-channel attacks.
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Use case in master thesis

data owner,
model owner

Client CloudµD, µM

µres¤SK

¤PK

¤EK, ¤PK

Figure 12: FHE basic use case
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More information on use case

Used Techniques
▶ model: XGBoost
▶ scheme: CKKS
▶ library: to be chosen
▶ framework: HElayers (IBM)
▶ dataset: Bank Marketing
▶ benchmarking modes:

▶ all-in-one
▶ batch

Evaluation metrics
▶ latency
▶ throughput
▶ accuracy
▶ libraries
▶ parameters
▶ (dataset)
▶ (compressed model)
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Summary

1. Fully Homomorphic Encryption
▶ Properties
▶ Classification - historical and formal
▶ Security
▶ Beyond
▶ (Implementations)

2. Use Cases
▶ (General)
▶ Specific use case

Future Developments
Implement and analyze the use case with HeLayers
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Summary

Contribution:
▶ adding efficiency, security to properties
▶ distinguish between plain- and ciphertext operations
▶ increased understanding of i-hop correctness
▶ security described with practical implications
▶ KDM vs. circular security
▶ incorrect evaluation solutions
▶ limitations of FHE and positioning in cryptography
▶ overview of most common use cases

Future Developments
Implement and analyze the use case with HeLayers

Thank you for your attention - Any questions?
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Link to the slides

Figure 13: Link to the presentation slides
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Encryption during Processing

data owner,
model owner

µf(D′)

Client
Cloud

��µD, µD′ , f

µf(D′)¤SK

¤PK

¤EK, ¤PK

Figure 14: Problem: Malleability
during processing

data owner,
model owner

CHECK sig
µf(D)

Client
Cloud

(µD, sig(D)) , f

µf(D)¤SK

¤PK ¤EK, ¤PK

Figure 15: Solution: signature
sig(D) = Encnormal (h(D), kpriv)

Remark (Other solution)
Use traditional encrypted
transport protocols additionally to
FHE encryption
→ small overhead, but
implemented and known
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Beyond Homomorphic Encryption

FHE

MKFHE

TMKFHE

LHE/ SHE

PHE

evolution

functional encryption obfuscation

allows to construct FHE

interactive

transciphering

modes

searchable symmetric encryption

structured encryption

Trusted Execution Environments (TEEs)

Multiparty Computation (MPC)

alternatives

key evolution

proxy re-encryption

features of FHE

zero knowledge proofs

homomorphic signatures/ hashes

FHE is building block for

verifiable computation

homomorphic authenticated encryption

can be build from homomorphic hashes

+ control over

evaluatable function

+ result unencrpyted

− embedding secret key

in published program

Privacy-Enhancing Cryptography (PEC)

Figure 16: Beyond FHE
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More Use Cases

How many parties involved?

3 parties2 parties multiple parties

data owner =
model owner

secret key

known by

data owner,
model owner

Client CloudµD, µM

µres¤SK

¤PK

¤EK, ¤PK

1. Outsourcing Computation

data owner model owner

µD
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¤PK ¤EK, ¤PK

2. Outsource Data

model owner data owner

µM

µres¤SK
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¤EK, ¤PK

3. Outsource Model
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Non colluding assumption

4. Shared Outsourced

Computation I
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5. Shared OutsourcedComputation II

data owner1

¤SK1
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6. Multi Party Computation

Yes No data owner model owner

use additional techniques with FHE (e.g. Trusted Execution Environments)
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Figure 17: FHE use cases
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Use Case Implementation

Figure 18: ML pipeline with FHE
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Overview Schemes

Operation BFV BGV CKKS FHEW TFHE

Native Add/Sub • • • ◦ ◦
Native Mult • • • ◦ ◦

SIMD • • • (•) (•)
Boolean Logic ◦ • ◦ • •

< 1s Bootstrapping ◦ ◦ ◦ • •

Figure 19: Schemes
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Overview Libraries

Library Language
Schemes

BGV BFV FHEW TFHE CKKS

in
H
eL

ay
er
s

HEAAN C++ ◦ ◦ ◦ ◦ •
HElib C++ • ◦ ◦ ◦ •

PALISADE C++ • • • • •
OpenFHE C++ • • • • •
Lattigo Go • • ◦ ◦ •
SEAL C++/ C# • • ◦ ◦ •

FHEW C++ ◦ ◦ • ◦ ◦
TFHE C++/ C ◦ ◦ ◦ • ◦
concrete Rust ◦ ◦ ◦ • ◦

RNS-HEAAN C++ ◦ ◦ ◦ ◦ •
FV-NFLlib C++ ◦ • ◦ ◦ ◦
CuFHE Cuda/C++ ◦ ◦ ◦ • ◦
NuFHE Python ◦ ◦ ◦ • ◦

Figure 20: Libraries
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Overview Frameworks

Compiler Language Library
HElib SEAL PALISADE FHEW TFHE HEAAN

ALCHEMY Haskell ◦ ◦ ◦ ◦ ◦ ◦
Cingulata C++ ◦ ◦ ◦ ◦ • ◦

E3 C++ • • • • • ◦
SHEEP C++ • • • ◦ • ◦
EVA C++ ◦ • ◦ ◦ ◦ ◦

Marble C++ • • ◦ ◦ ◦ ◦
RAMPARTS Julia ◦ ◦ • ◦ ◦ ◦
Transpiler C++ ◦ ◦ • ◦ • ◦
CHET C++ ◦ • ◦ ◦ ◦ •

nGraph-HE C++ ◦ • ◦ ◦ ◦ ◦
SEALion C++ ◦ • ◦ ◦ ◦ ◦
HElayers C++, python API • • • ◦ ◦ •

Figure 21: Compilers/ Frameworks
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