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Data breaches in the cloud

3x

The number of data breaches
more than tripled between 2013
and 202222

lof4

In the first three quarters of 2023,
one in four people in the US

had their health data exposed in
a data breach.26%7

360
million

In the first eight months of 2023
alone, over 360 million people

were victims of corporate
and institutional data breaches.?®

98%

98% of organizations have a
relationship with a vendor

that experienced a data breach
within the last two years.”®

Figure 1. Rise of data breaches in the cloud [3]
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FHE allows secure cloud computations

Client

Cloud Storage

c; = Enc(m;)

msy, Im3

C1,C

Cloud

Figure 2: Usage of cloud storage - always encrypted
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FHE allows secure cloud computations

Client

Traditional Cloud Computing

Ci = Enc(m,-)

my, mp

Enc(my * my)

Cloud

m; = Dec(c¢;)
mq * mo
Enc(my x my)

Figure 2: Usage of traditional cloud computing - unencrypted
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FHE allows secure cloud computations

Traditional Cloud Computing ‘

FHE Setting

Client ¢ — Enc(m;) Cloud

ml’ m2

€ * G

Cloud

Client ¢ = Enc(m;)

m; = Dec(¢;)
my * my
Enc(my * mo)

my, mz

Enc(my * my)

Figure 2: Usage of FHE in the public cloud - always encrypted
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FHE allows secure cloud computations

Traditional Cloud Computing‘

FHE Setting

Client ¢ — Enc(m;) Cloud

m17m2
o

J c* G

Cloud

Client ¢ = Enc(m;)

m; = Dec(¢;)
my * mp
Enc(my * my)

my, mz

J Enc(my * my)

Dec(Enc(my * mp)) = my * my Dec(cy * ) = my * my

Figure 2: Usage of FHE in the public cloud - always encrypted
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Functional completeness

Theorem (Functional Complete
Set)

The ability to evaluate any

A
function homomorphically is B :}>4—‘—D7 .
achievable if addition and ¢
multiplication can be performed
homomorphically and can be Figure 3: Example Circuit with XOR
iterated, since they constitute a and AND

functionally complete set over
finite rings.
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Procedures in (correct) HE schemes

Table 1: Algorithms and keys of HE
vs. classic encryption

classic encryption

SK
keys. PK

B Definition ((correct) Eval)

[EK

. Eval(EK, f,c) — ¢

KeyGen
Enc
procedure Dec

( Eval

Refresh ‘
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Procedures in (correct) HE schemes

Table 1: Algorithms and keys of HE
vs. classic encryption

Definition ((correct) Eval)

classic encryption | homomorphic encryption EV3|(EK, f" C) _) C/
SK . .
keys. PK . .
(e ° . Dec(c’) = Dec[Eval(EK, f, c)] = f(m).
KeyGen . .
Enc
procedure Dec . hd
(" Eval ° . J
Refresh ‘ .
Correctness

We assume correctness here. Formally correct the Eval function just
returns a ciphertext c’.
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Procedures in (correct) HE schemes

Definition ((correct) Eval)

Table 1: Algorithms and keys of HE Eval(EK, f,c) — ¢’
vs. classic encryption
Dec(c’) = Dec[Eval(EK, f, c)] = f(m).

classic encryption | homomorphic encryption
SK . .
keys PK . .
EK o . - e
Definition (Refresh)
KeyGen . .
Enc . . Refresh(EK, c, flag) — ¢’
procedure Dec . .
Eval o .
Refresh B ) . .
[ noise(c’) < noise(c)
Correctness

We assume correctness here. Formally correct the Eval function just
returns a ciphertext c’.
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Properties of FHE

(
‘
‘
:

h
'+ (C={alloved binary circuits}
|

T
M

C-homomorphic encryption scheme }rvwvvvvvvvwv

@orrect — correct decryption and evaluation)

Somewhat Homomorphic Encryption (SHE) }rvvvvvwv
‘

» efficient: run in polynomial
time in relation to the
security parameter A

» secure: IND-CPA secure

» (: allowed binary circuits

i- hop élassiﬁcation

(Length of Eval output is independant of d)

v v L

Levelled Homomorphic Encryption (LHE) M
l

1 ! \Levelled fully homomorphic harrnnnanss

‘Fully Homomorphic Encryption (FHE) )r\AN\N\N\W

Figure 4: Classification of FHE
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Properties of FHE

(
1 C = {alloued binary c)rcuits)
‘
‘

4 v b

C-homomorphic encryption scheme )r\AN\N\NW\N\N

@arrect = correct decryption and evaluation)

» correct:

» decrypt the encryption of
a message without any
error

for all functions f € C, it
can correctly decrypt the
results of the evaluation of
f over fresh ciphertexts
with overwhelming
probability

Somewhat Homomorphic Encryption (SHE) )r\NW\N\N
=)

h
1 (Length of Eval output is independant of d)
toa

|

v L

Levelled Homomorphic Encryption (LHE) )’\/\Nv

C = {all binary circuits) l

-hop classification

i

v

v
Fully Homomorphic Encryption (FHE) }fvwvvvvvvw -

Figure 4: Classification of FHE
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Properties of FHE

C-homomorphic encryption scheme )r\AN\N\NW\N\N

@arrect = correct decryption and evaluation)

>

Somewhat Homomorphic Encryption (SHE) )r\NW\N\N
e

I h

|

I

I

!

i- hup ;lassiﬁcation

h
[ (Lengch of Eval output is independant of d)
.

v v L

Levelled Homomorphic Encryption (LHE) )’\/\Nv

C = {all binary circuits) l

A\

Lo ‘Levelled fully homomorphic harrrmnnnss
Py emEERt e e

Fully Homomorphlc Encryption (FHE) }rvwvvvvvvw

Figure 4: Classification of FHE

compact: the output of the
Eval function is not bigger
than p(A) bits, independent
of the complexity of the
evaluated function f

Max depth of function is d

Length of Eval output is
independant of d
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Properties of FHE

efficient
h
secure)

Cnemomsrpiis smeryprion sehems | Remark (i-hop correctness)

@orrect = correct decryption and evaluanon]
h

Evaluating an arbitrary function is
1 not equal to consecutively
evaluating arbitrary many

1 functions.

Somewhat Homomorphic Encryption (SHE) }vavvvw
h

|

[

L ‘(Length of Eval output is independant of d)

[
v o~

Levelled Homomorphic Encryption (LHE) }rvvv» I

C = {all binary circuits} J
h

i-hop classification

F(...(F(m))) := Fa(m) — Eval(EK, Fa)v’

i ! LLevelled fully homomorphic e !
L Do Eval (EK, f (... (Eval(EK, f — ¢
‘Fully Homomorphic Encryption (FHE) }rvvvvvvvvvvﬁg ( ’ ( ( ( ’ ))))

Figure 4: Classification of FHE
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Notes on classification

Definition (Circuit Privacy)

A C-homomorphic encryption
scheme is (perfectly, statistically
or computationally) circuit private
if D; = Eval(EK, f,¢) and

D, = Enc(PK, f(m)) are
(perfectly, ...) indistinguishable.
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Notes on classification

o o _ Table 2: Circuit Privacy vs. Function
Definition (Circuit Privacy) Privacy

A C-homomorphic encryption
scheme is (perfectly, statistically

. B 3 3 Privacy Distributions of ... are the same
or computationally) circuit private
if D]_ = EVE)'(EK, f, C) and Circuit  Eval output of fi  fresh ciphertexts
D2 _ Enc(PK f(m)) are Function Eval output of f; Eval output of f»
- 9
(perfectly, ...) indistinguishable. FHE does not hide the structure
of ML models
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FHE generations

[iGa]  [20dGa]

Gentry Scheme
DGHYV Scheme
BGV Scheme
BFV Scheme
GSW Scheme
FHEW Scheme
TFHE Scheme
CKKS Scheme

T T T T
2009 2010 2011 2012 2013 2014 2015 2016 2017

Figure 5: Timeline of the main FHE schemes.
B Schemes based on ideal lattices, ! Schemes based on AGCD,
B Schemes based on LWE and RLWE !
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FHE generations

Table 3: Comparison of FHE generations

2nd Generation 3rd Generation 4th Generation
SCHEMES BGV BFV TFHE CKKS
Integer Arithmetic Bitwise operations  Real Number Arithmetic
scalar mult . . .
FAST OPERATIONS  arithmetic . . .
non-arithmetic o . o
fast bootstrapping o . 2
PROPERTIES fast packing/ batching/ SIMD . o .
levelled design . . .
PROS fast scalar multiplication number comparison polynomial approx.
linear functions - multiplicative inverse
efficient - boolean circuits DFT, logistic regression
CONS slow non-linear functions - slow non-linear functions
USAGE large arrays of numbers  bit-wise operations  real numbers arithmetic

2CKKS has a fast amortized bootstrapping procedure.
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From SHE to FHE

Noise reducing techniques

noise growth — Refresh procedure needed
» bootstrapping
» key-switching

» re-linearization
» modulus switching
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From SHE to FHE

Legend

- ey . message

ciphertext

E"Ecﬂ (m)=¢ l EV%!_;;E\ (fre1senien) = e error adding with
. o encryption using =
&

€1

! error adding with
In the bootstrapping N }
this part is considered encryption using ﬁ

as a new message to encrypt ﬁ public key
£ secretkey

If the error exceeds this
level, the decryption fails t

¥
(%

3] «— [0 | «— [5]
S
I
3
| «—
2

— > flm)
E>ei£)(cgb)

Evalg (f.c1, .
g 2 Enp}' Z/\

Figure 6: lllustration of the bootstrapping technique by Marcolla et al. [1]
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Security

oracle

choose random m € {0,1}
c = Enc(m)

Rk,
Repi,
Resk

Figure 7: IND-CPA Security

Definition (IND-CPA Security)

The scheme is IND-CPA secure if
for an efficient adversary A, it
holds that:

Pr[A (PK, EK, Encpk(0)) = 1] —
Pr[A(PK, EK, Encpk(1)) = 1] = negl())

where

(SK, PK, EK) < KeyGen()).
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Security

Definition (IND-CPA Security)
The scheme is IND-CPA secure if

; 1 | for an efficient adversary A, it
' i ask for Enc(m;) '

! choose m; e Enc(m;, PK) = ¢; ! holds that:

B !

adversary oracle

i R 3 Pr[A (PK, EK, Encpk(0)) = 1] —
- B | Pr[A (PK, EK, Encpr(1)) = 1] = negl())
e where
Figure 7: IND-CPA Security (SK, PK, EK) + KeyGen(}).

repeat p(A) times
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Security

adversary oracle
i ask for Enc(m)
choose m;j 1 ——————— | Enc(m;,PK) = ¢;
L Gi
GQepk Reek,

1 RKeek Repk,
Ea s
I
I

Figure 7: IND-CPA Security

Definition (IND-CPA Security)

The scheme is IND-CPA secure if
for an efficient adversary A, it
holds that:

Pr[A (PK, EK, Encpr(0)) = 1] —
Pr[A(PK, EK, Encpk(1)) = 1] = negl(})

where
(SK, PK, EK) < KeyGen(A).
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Security

Theorem
IND-CPA security is only achievable if the encryption scheme
randomizes ciphertexts.

Proof.

choose random m € {0, 1}

i Ripk Rk,
i ek Repk,
| Rsk

Figure 8: IND-CPA Security is only achievable with randomization
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Security

Theorem
IND-CPA security is only achievable if the encryption scheme
randomizes ciphertexts.

PK Rk,
EK Rk,
Resk

Proof.
[ e e e e |
| |
| |
| |
! oracle !
: adversary ¢ = Enc(m) :
L e |
Lo } !
| ! — 7 _ _ |
Co = C?, 1 askforc = Enc(0), e = Enc(1)
l 0 e | choose random m € {0,1} |
| La= c? |
| |
! | | o, €1 !
[ - Yo |
| |
| |
| |
\ |
| |
| |
] |
| |
| |
| |

Figure 8: IND-CPA Security is only achievable with randomization
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Security

Theorem
By their design, HE schemes can not achieve indistinguishability
under adaptive chosen ciphertext attack (IND-CCA2) security.

Proof.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

adversary ¢ = Enc(m) oracle

| |
' choose random m’ ! o Dec(c)

1 ¢/ = Enc(m’) | —————— | choose random m
c=cac
|
,,,,,,,,,,,,,,,,
ek Ree,
Kk Qpk,
Resk

Figure 9: IND-CCA2 Security is not achievable
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Security

Theorem
By their design, HE schemes can not achieve indistinguishability
under adaptive chosen ciphertext attack (IND-CCA2) security.

Proof.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

‘ adversary ¢ = Enc(m) oracle :
3 3 m = Dec(c) | ask for Dec(c) |
| 1= Dec(c) + Dec(c')t ———— | m=m+n' |
‘ 1= Dec(c) +m’ ! o w

| m |

Figure 9: IND-CCA2 Security is not achievable
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Security: malicious adversary

T Clowd | Possible solutions

! Client ap, f ! .

! [ data owner, ! » known evaluation results
! | model owner - i

TN 8,0 ! P> statistics

! [- N Repk, Xpx

e ‘ » Trusted Execution
Figure 10: Malicious adversaries are a Environments
problem » homomorphic hashes
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Additional Notes on Security

The security of FHE

>
>
>

is based on LWE/ RLWE,
is considered quantum safe,

can be implemented leakage
resilient,

can be circuit/ function
private,

allows key evolution,

and no decryption is needed

for outsourcing
computations.
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Additional Notes on Security

The security of FHE

>
>
>

is based on LWE/ RLWE,
is considered quantum safe,

can be implemented leakage
resilient,

can be circuit/ function
private,

allows key evolution,

and no decryption is needed

for outsourcing
computations.

Table 4: Circular Security vs. KDM

Security

circular security

KDM

Enc(PK, SK)

EhC(PKQ7 SK]_)
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Limitations

Table 5: Main limitations of FHE and their

solution

Limitation

potential solution

computational overhead

Hardware acceleration and
better packing techniques

lack of standardization

hard to use

Homomorphic Encryption Standard and
stable open source libraries

High level compilers like HElayers

Table 6: Running times of
multiplying 2 bits
homomorphically [2]

Year  runtime speedup speedup per year
2009 30 min - -
2014 2000 ns 9-108 18107
2020 100 ns 20 3.33

... Hardware Acceleration ...
2024 0.1 ns 1000 250
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Limitations

Table 5: Main limitations of FHE and their
solution

Limitation potential solution

computational overhead Hardware acceleration and
better packing techniques

lack of standardization Homomorphic Encryption Standard and
stable open source libraries

hard to use High level compilers like HElayers

Industry:
1. Microsoft
2. Samsung SDS
3. Intel
4. Duality Technologies
5. IBM
6. Google
7. SAP
8.
Government:
1. NIST
2. SLAC National
Accelerator Lab
3. United Nations / ITU
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Limitations

Table 5: Main limitations of FHE and their
solution

Limitation potential solution

computational overhead Hardware acceleration and
better packing techniques

lack of standardization Homomorphic Encryption Standard and
stable open source libraries

hard to use High level compilers like HElayers

Compilers adress
engineering challenges

>
>

parameter selection
plaintext encoding

data-independent
execution

ciphertext
maintenance
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Beyond Homomorphic Encryption

FHE MPC TEE
no communication ° o °
no computational overhead o ° .
no known attacks ° ° o
security based on LWE, RLWE | protocols hardware

Figure 11: Simplified comparison of FHE, MPC and TEE. MPC has a large
communication overhead, FHE is computational expensive and TEEs are
often proven to be vulnerable against side-channel attacks.
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Use case in master thesis

Client &y, &) Cloud

|

|

|

. | data owner,
| | model owner
|

|

|

|

|

|

cl*fSI( ‘i7wzs ¢:l§IEI< ’ ¢:l¢I)I<
Qrk

Figure 12: FHE basic use case
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More information on use case

Used Techniques

| 4

>
>
| 2
>
>

model: XGBoost

scheme: CKKS

library: to be chosen
framework: HElayers (IBM)

dataset: Bank Marketing
benchmarking modes:

» all-in-one
» batch

Evaluation metrics
> latency
throughput
accuracy
libraries
parameters
(dataset)

>
>
>
>
>
> (compressed model)
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Summary

1. Fully Homomorphic Encryption
» Properties
» Classification - historical and formal
» Security
» Beyond
> (Implementations)
2. Use Cases

> (General)
P Specific use case

Future Developments
Implement and analyze the use case with Helayers
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Summary

1. Fully Homomorphic Encryption

» Properties

» Classification - historical and formal
» Security

> Beyond

> (Implementations)

2. Use Cases

> (General)
» Specific use case

Future Developments
Implement and analyze the use case with Helayers

Thank you for your attention - Any questions?
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Summary

Contribution:

>

VVVYy VYV VY

adding efficiency, security to properties

distinguish between plain- and ciphertext operations
increased understanding of i-hop correctness
security described with practical implications

KDM vs. circular security

incorrect evaluation solutions

limitations of FHE and positioning in cryptography

overview of most common use cases

Future Developments

Implement and analyze the use case with Helayers

Thank you for your attention - Any questions?
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Link to the slides

13: Link to the presentation

Figure
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Encryption during Processing

Client 96, ap, f

I
i | data owner,
|

i | model owner
I

o
." g
c
a

Figure 14: Problem: Malleability
during processing

I . Y I
' Client (8p, sig(D)), f B
3 data owner, !
1| model owner !
3 Qs &;p) 3
! Qepic Rpk, Rpx

Figure 15: Solution: signature
Sig(D) = Encnormal (h(D)7 kpriv)

Remark (Other solution)

Use traditional encrypted
transport protocols additionally to
FHE encryption

— small overhead, but
implemented and known
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Beyond Homomorphic Encryption

functional encryption

obfuscation

T comiral over
evalustable function

interactive

transciphering

key evolution

1
I
I
proxy re-encryption |
I

allows to construct FHE

"~ cmbedding secret ke

searchable symmetric encryption
structured encryption
Trusted Execution Environments (TEBs)

Multiparty Computation (MPC)

features of FHE

alternatives
zero knowledge proofs
homomorphic signatures/ hashes
i FHE is building block for
evolution
,,,,,,,,,,,,,,,,,,,,,, N

verifiable computation

1

|
. . . !
homomorphic authenticated encryption
)

can be build from homomorphic hashes

Privacy-Enhancing Cryptography (PEC)

Figure 16: Beyond FHE
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More Use Cases

How many parties involved?

Gecret Key
known by

data owner

Client a8,

1. Shared Outsourced

Computation T

interactive mode

use additional techniques with FHE (e.g. Trusted Execution Environments) ‘

Figure 17: FHE use cases
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Use Case Implementation

[hew s
e

e Mo, both b lask
= vedl b o™

al gt

Figure 18: ML pipeline with FHE
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Overview Schemes

Operation BFV BGV CKKS FHEW TFHE

Native Add/Sub
Native Mult
SIMD
Boolean Logic
< 1s Bootstrapping

O O e e e
O e e e o
O O e e o
—
®e ¢ ¢ O O
~—
—
L]
~—

Figure 19: Schemes
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Overview Libraries

Library Language Schemes
. BGV BFV FHEW TFHE CKKS
” HEAAN C++ o o o o .
= HEIlib C++ . o o o .
5 PALISADE C++ . . N . .
= OpenFHE C++ . . . . .
= Lattigo Go . . o o .
. SEAL C++/ C# . . o o o
FHEW CH++ o o ° o o
TFHE C++/C o o o . o
concrete Rust o o o ° o
RNS-HEAAN C++ o o o o .
FV-NFLIib C++ o . o o o
CuFHE Cuda/CH+ o o o . o
NuFHE Python o o o . o
Figure 20: Libraries
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Overview Frameworks

Compiler Language Library
HElb SEAL PALISADE FHEW TFHE HEAAN

ALCHEMY Haskell ) o o o o o
Cingulata CH++ ) o ) o . o
E? C++ . . . . . o
SHEEP CH++ . . . o . o
EVA C++ o . o o ) o
Marble CH++ . . o o ) o
RAMPARTS Julia o o . o o o
Transpiler CH++ o o . o . o
CHET CH++ o . o o o .
nGraph-HE CH++ ) . ) o o o
SEALion CH++ ) . ) o o o
HElayers C++, python API . . . o ) .

Figure 21:

Compilers/ Frameworks
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