
3. Goppa Codes

3.1. Einleitung

Goppa Codes sind für Kryptosysteme von besonderer Bedeutung, da für
sie im Gegensatz zu vielen anderen Codeklassen weiterhin die Annahme
der Ununterscheidbarkeit von zufälligen linearen Codes gilt. Kombiniert mit
der zweiten Annahme, dass zufällige lineare Codes aufgrund des General-
Decoding-Problems (sowohl auf Digitalrechnern als auch mithilfe von Quan-
tencomputern) nicht effizient decodiert werden können,1 ist es möglich, mit
einem effizienten Decodierverfahren für Goppa Codes eine quantensichere
Einwegfunktion und damit ein quantensicheres Kryptosystem zu konstruieren.
Der Kern dieses Kapitels ist es ein effizientes Decodierverfahren für Goppa
Codes herzuleiten. Dazu werden Goppa Codes definiert und grundlegende
Eigenschaften bewiesen. Das Kapitel ist angelehnt an die Arbeiten von Goppa
[12], Huffman et al. [13], Baldoni et al. [1] und MacWilliams et al. [16].

Goppa Codes wurden 1970 vom russischen Mathematiker Valery Goppa
in seinem Paper „A new class of linear correcting codes“ eingeführt [12].
Nach Goppa hat diese Codeklasse die besonderen Vorteile, wie zyklische
Codes durch ein Generatorpolynom spezifiziert zu sein. Doch im Gegensatz zu
zyklischen Codes erlaube der Grad des Generatorpolynoms eine Abschätzung
der Parameter eines Goppa Codes. Die einzigen zyklischen Codes, die nach
Goppa ebenfalls diese Eigenschaft aufweisen, seien BCH-Codes, die durch
Goppa Codes verallgemeinert würden (vgl. [12]).

1Da es sich hierbei um Annahmen handelt, sind die beiden Aussagen bisher nicht bewie-
sen oder widerlegt worden. Sie bilden die Grundlage für die Sicherheit des McEliece
Kryptosystems.



Kapitel 3. Goppa Codes 18

3.2. Definition und Parameter von Goppa Codes

Goppa Codes der Länge n über Fq sind wie folgt definiert:2

Definition 3.1 (Goppa Codes). Sei Fq ein endlicher Körper und m ∈ N
beliebig.

Es seien L = (α1, . . . , αn) ein n-Tupel paarweise verschiedener Elemente aus
Fqm und g(x) ∈ Fqm [x] ein normiertes Polynom mit g(αi) ̸= 0 für i = 1, . . . , n.
Dann heißt der lineare Code

Γ(L, g) :=
{

c = (c1, . . . , cn) ∈ Fn
q : Rc(x) =

n∑
i=1

ci

x− αi
≡ 0 mod g(x)

}

über Fq (klassischer) Goppa Code der Länge n zum Goppa-Polynom g(x).
L wird auch Support des Goppa Codes genannt.
Ist g(x) zudem irreduzibel, so wird Γ(L, g) als irreduzibler Goppa Code

bezeichnet.

Es ist zu bemerken, dass das Inverse von x− αi mod g(x) existiert, da aus
g(αi) ̸= 0 folgt, dass der ggT von (x − αi) und g(x) gleich 1 ist. Aus dem
Lemma von Bézout folgt dann die Existenz.

Satz 3.2 (Goppa Codes sind lineare Codes). Goppa Codes sind lineare Codes,
da

Rac(x) =
n∑

i=1

aci

x− αi
= a

n∑
i=1

ci

x− αi
≡ a · 0 ≡ 0 mod g(x)

für alle a ∈ Fq, c ∈ Γ(L, g) gilt und

Rc1+c2(x) =
n∑

i=1

c1 + c2
x− αi

=
n∑

i=1

c1
x− αi

+
n∑

i=1

c2
x− αi

≡ 0 + 0 ≡ 0 mod g(x)

für alle c1, c2 ∈ Γ(L, g) gilt.

2Beachte, dass im Originalpaper nur binäre Goppa Codes betrachtet werden, die erst
in späteren Papern generalisiert wurden. Hier wird eine Definition über beliebigen
Galoiskörpern gegeben.
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3.2.1. Kontrollmatrix (und Generatormatrix)

Im vorherigen Abschnitt wurde gezeigt, dass Goppa Codes lineare Codes sind.
Da für jeden linearen Code eine Generator- und Kontrollmatrix existiert, wird
im Folgenden die Kontrollmatrix von Goppa Codes hergeleitet.3

Die Existenz von (x − αi)−1 aus der Definition von Goppa Codes wurde
bereits gezeigt. Das Inverse Element zu (x − αi)−1 lässt sich mittels des
erweiterten euklidischen Algorithmus herleiten und ist nach Huffman et al.
[13] wie folgt angeben

1
x− αi

= 1· 1
x− αi

≡
(

g(αi)
g(αi)

− g(x)
g(αi)

) 1
x− αi

≡ − 1
g(αi)

g(x)− g(αi)
x− αi

mod g(x).

(3.1)
Ersetzt man in Definition 3.1 den Bruch 1

x−αi
gemäß Gleichung 3.1, so ist c

genau dann ein Codewort, wenn4

Rc(x) =
n∑

i=1

ci

x− αi
≡

n∑
i=1

ci
g(x)− g (αi)

x− αi
g (αi)−1 ≡ 0 mod g(x) (3.2)

gilt. In Gleichung 3.2 kann die modulo Operation weggelassen werden, da der
Grad von

n∑
i=1

ci
g(x)− g (αi)

x− αi
g (αi)−1

durch die Division von g(x) durch x − αi stets kleiner ist als der von g(x).
Ein Codewort c ist also genau dann in Γ(L, g) enthalten, wenn

n∑
i=1

ci
g(x)− g (αi)

x− αi
g (αi)−1 = 0 (3.3)

gilt. Nun wird der Bruch
g(x)− g(αi)

x− αi

genauer analysiert, indem ein Goppa-Polynom eines spezifischen Grades ange-
3Die Kontrollmatrix statt der Generatormatrix herzuleiten ist durch die Definition von

Goppa Codes motiviert.
4Man kann das Minus weglassen, da 0 ≡ −0 gilt.


