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ABSTRACT
Fully Homomorphic Encryption (FHE) is a groundbreaking cryp-

tographic technique that enables computation on encrypted data,

maintaining confidentiality even during processing. This technol-

ogy is increasingly relevant due to stringent privacy laws like the

General Data Protection Regulation (GDPR) and the rise of sig-

nificant and costly data breaches in cloud environments. It holds

immense potential in many sectors such as healthcare, for secure

analysis of encrypted patient records, or finance, for confidential

processing of financial data in unregulated environments.

This paper aims to provide foundational knowledge on FHE,

position it within the field of cryptography, review key schemes

and implementations, and specifically explore its practical use cases.

1 INTRODUCTION
Fully Homomorphic Encryption (FHE) stands as a pivotal innova-

tion in the realm of cryptography, hailed as the ’holy grail’ [22] for

its ability to process any function on encrypted data, without ever

needing to decrypt them into plaintexts. Traditional encryption

techniques only allow encryption at rest. FHE on the other hand

allows encryption at processing, thereby preventing data extrac-

tions throughout the computation process. The significance of FHE

is magnified in an era where data breaches and privacy concerns

are rampant, which exposed the personal information of millions

of individuals. and where legislation such as the European Union’s

General Data Protection Regulation (GDPR) mandates stringent

data protection measures.

The concept of FHE was first introduced in 1978 by Rivest, Adle-

man, and Dertouzos, who envisioned the idea of ’privacy homo-

morphisms’ – a precursor to what we now understand as FHE [24].

While RSA, a widely-known cryptographic system developed in

1977 by Rivest, Shamir, and Adleman, is often cited as an early exam-

ple of a scheme supporting a single homomorphic operation, it does

not represent the full scope of FHE. Early systems like RSA demon-

strated the potential for homomorphic properties, but they were

limited, supporting only specific types of operations on ciphertexts.

The realization of FHE schemes, where an arbitrary function can

be performed on encrypted data, remained elusive until Craig Gen-

try’s groundbreaking work in 2009 [14]. Gentry’s research marked

a turning point, demonstrating for the first time how to construct

a system that could handle an unlimited number of both addition

and multiplication operations on encrypted data by introducing

the concept of bootstrapping. Since then, the field has seen a pro-

liferation of new constructions and schemes, each contributing to

the advancement and practical feasibility of FHE.

The applicability of FHE extends across numerous sectors, en-

abling secure data processing within cloud environments by effec-

tively preventing unauthorized data extraction through encryption.

In the healthcare industry, for instance, FHE empowers researchers

to securely analyze encrypted medical records, deriving critical

insights without compromising patient confidentiality. Similarly, in

the financial domain, FHE plays a pivotal role by allowing the secure

processing of encrypted financial transactions and their analysis

with machine learning in unregulated cloud-based environments.

However, a significant limitation of FHE is its substantial com-

putational overhead. Consequently, this paper investigates possible

use cases and the practical applicability of FHE.

Organization: The remainder of the paper is organized as follows:

In section 2, Fully Homomorphic Encryption (FHE) is thoroughly

defined, analyzed, and positioned within the field of cryptography.

Specifically, subsection 2.1 discusses the properties of FHE, and

subsection 2.2 defines various types of homomorphic encryption.

Subsection 2.3 delves into the historical development of FHE, allow-

ing subsection 2.4 to provide a brief overview of the methods for

achieving FHE. Subsection 2.5 conducts a comprehensive security

analysis of FHE, followed by an examination of its limitations in

subsection 2.6. Homomorphic encryption is then situated within the

cryptographic field and delineated from other methods in subsec-

tion 2.7. Subsection 3 offers a brief overview of current encryption

schemes and their implementations. Subsequently, section 4 defines

potential use cases, thereby concluding the theoretical analysis of

FHE in general. Section 5 describes the new contributions in this

paper and outlines the practical work following this survey.

Preliminaries: No specific prior knowledge is required to read

this paper. A basic understanding of different security definitions

is helpful but not essential.

Notation: In this paper,𝑚 generally denotes a plaintext message,

and 𝑐 represents the corresponding ciphertext. The symbol 𝑓 is used

to denote an arbitrary function/circuit from the function/circuit

space 𝐶 . The security parameter of the encryption schemes is de-

noted by 𝜆, while the various keys in homomorphic encryption

schemes are represented by SK, PK, and EK for the secret, pub-

lic, and evaluation keys, respectively. For traditional encryption

methods, kpriv and k
pub

are used to denote the private and public

keys. The homomorphic encryption procedures encryption, decryp-

tion, and evaluation are denoted by Enc,Dec, and Eval, respectively.

For improved readability, the specification of individual parame-

ters of these procedures are sometimes omitted. In contexts where

both classical and homomorphic encryption are utilized, the sub-

scripts serve to specify the encryption scheme in question. For

example, Enc
normal

and EncFHE are used to distinguish between

non-homomorphic and homomorphic encryption, respectively. The

symbol 𝑝 denotes an arbitrary polynomial, ℎ represents any hash

function, 𝑑 indicates the depth of a function/circuit, 𝑃𝑟 denotes a

probability, and "negl" stands for a negligible probability. At the

level of individual operations, +, ·, and ∗ denote the plaintext oper-
ations of addition, multiplication, and an arbitrary plaintext opera-

tion, respectively. The equivalent operations on the corresponding
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ciphertexts are denoted by ⊕, ⊙, and ★. For an arbitrary function 𝑓

we do not differentiate between the evaluation of 𝑓 on plaintexts

and ciphertexts.

2 HOMOMORPHIC ENCRYPTION
An encryption scheme

1
is called homomorphic over an operation

if given some ciphertexts, the operation over the plaintexts can

be performed without decryption by manipulating the ciphertexts

directly [22]. Formally (correct) homomorphic encryption over an

operation is defined as follows.

Definition 2.1 ((Correct) Homomorphic Encryption). Given an en-

cryption scheme with the encryption function Enc, the decryption

function Dec and two plaintexts𝑚1,𝑚2 with their respective cipher-

texts 𝑐1 = Enc(𝑚1), 𝑐2 = Enc(𝑚2). The encryption scheme is called

(correct) homomorphic over an operation ∗, if the operation ∗ on the

plaintexts can be directly performed with its analog operation ★

on the ciphertexts such that

𝑚1 ∗𝑚2 = Dec(Enc(𝑚1) ★ Enc(𝑚2)) = Dec(𝑐1 ★ 𝑐2)
holds.

The ability to evaluate any function homomorphically is achiev-

able if addition and multiplication can be performed homomor-

phically and can be iterated, since they constitute a functionally

complete set over finite rings. In particular, any boolean (arithmetic)

circuit can be expressed solely through the use of XOR (addition)

and AND (multiplication) gates [1]. Bitwise addition and multipli-

cation are thus regarded as foundational operations within FHE

schemes.

Note: Rotation is also considered a base operation in FHE schemes.

This operation, particularly when applied to a ciphertext containing

multiple packed plaintexts, facilitates the rearrangement of various

plaintext slots. Such a capability significantly contributes to the

optimization of implementations for higher-level computational

operations.

is defined as a tuple of four probabilistic algorithms, namely

Formally correct a Homomorphic Encryption (HE) scheme as a

tuple of four probabilistic algorithms, namely KeyGen, Enc, Dec,

and Eval. The KeyGen algorithm essentially takes as input the

security parameter 𝜆 and outputs a secret key SK, a public key

PK, and an evaluation key EK. The Enc procedure takes a message

𝑚, encrypts the message under the public key PK and outputs the

ciphertext 𝑐 . TheDec algorithm decrypts a ciphertext 𝑐 to a plaintext

𝑚, given the secret key SK.

The Eval procedure is what makes HE schemes special. Given

the evaluation key EK, a function 𝑓 , and a ciphertext 𝑐 the Eval

procedure outputs a ciphertext 𝑐′. We assume a correct HE scheme

here, so the output of the Eval function is corresponding to the

functioned plaintexts, so the following holds:

Dec(𝑐′) = Dec[Eval(EK, 𝑓 , 𝑐)] = 𝑓 (𝑚) .
The ciphertext 𝑐 and the plaintext𝑚 can be a vector of cipher- or

plaintexts, e.g. 𝑐 = (𝑐1, 𝑐2). FHE schemes also have the additional

"Refresh" procedure that takes a ciphertext 𝑐1, the evaluation key

1
This paper only covers asymmetric homomorphic encryption schemes. It does not

discuss symmetric FHE schemes, given their relatively restricted utility in cloud

computing.

Table 1: Comparison of HE vs. normal encryption
The Refresh procedure is only needed for FHE schemes and
is often avoided in LHE.

classic encryption homomorphic encryption

keys

SK • •
PK • •
EK ◦ •

procedure

KeyGen • •
Enc • •
Dec • •
Eval ◦ •

Refresh ◦ •

EK and a multi-valued flag as inputs and returns a new ciphertext 𝑐2
that encrypts the same plaintext as 𝑐1. The desired property of the

Refresh function is to transform a complex ciphertext into a "simple"

one, allowing more homomorphic operations to be performed on

the fresh ciphertext. "Therefore either the bootstrapping procedure

(flag = "Bootstrap") is performed, which takes a ciphertext with

large random error (noise) and outputs a new ciphertext of the

same message with a fixed amount of noise, or the key-swichting

procedure (flag ∈ {Relinearize,ModSwitch}) is applied, which takes
a ciphertext under one key and outputs a ciphertext of the same

message under a different key"[4]. In Table 1 a short overview

of the keys and procedures of normal encryption compared to

homomorphic encryption is given.

Note that this representation is greatly simplified. There are a

few more procedures defined in the "Homomorphic Encryption

Standard" [4] and the plaintext space, the ciphertext space and

the output space of the Eval function can differ. Here we omit the

difference between the ciphertext space and the output space of

the Eval function for simplicity, and because the evaluation of the

identity function can transform a ciphertext into the output of the

Eval function. An extensive discussion about the formal definition

of homomorphic encryption schemes and their properties is given

in the paper of Armknecht et al. [6].

2.1 Attributes
For each FHE scheme the basic properties of correctness, compact-
ness and circuit privacy should hold [6]. To have a closer look at

this properties we first have to define the term 𝐶-homomorphic

encryption scheme.

Definition 2.2 (𝐶-Homomorphic Encryption Scheme). AHE scheme

is called 𝐶-homomorphic encryption scheme if it is an efficient, se-
cure homomorphic encryption scheme over each function in 𝐶 .

Secure means in this context IND-CPA secure (see Definition

2.9). Efficiency guarantees that the KeyGen, Enc and Dec procedure

of the scheme run in polynomial time in relation to the security

parameter 𝜆 (and is not dependant on the function that is evaluated

on the ciphertext) [4]. It is important to note, however, that this

is a theoretical requirement and, in practical terms, may permit

runtimes that are exceedingly impractical.
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Table 2: Circuit Privacy vs. Function Privacy

Privacy Distributions of . . . are the same

Circuit Eval output of 𝑓1 fresh ciphertexts

Function Eval output of 𝑓1 Eval output of 𝑓2

The functions in 𝐶 are also called circuits2 and some authors

also use the term 𝐶-evaluation scheme instead of 𝐶-homomorphic

encryption scheme.

Definition 2.3 (Correctness). A𝐶-homomorphic encryption scheme

is correct, if it can decrypt the encryption of a message without

any error and if for all functions 𝑓 ∈ 𝐶 , it can correctly decrypt

the results of the evaluation of 𝑓 over fresh ciphertexts with over-

whelming probability
3
[6].

Note: For intuitive purposes, the definitions of Homomorphic En-

cryption and, by extension, a C-Homomorphic Encryption scheme,

presume their correctness. Formally, a Homomorphic Encryption

scheme and a C-Homomorphic Encryption scheme may not neces-

sarily fulfill this criterion of correctness and are just defined as a

tuple of probabilistic polynomial–time algorithms

(KeyGen, Enc, Eval,Dec), where the Eval procedure just returns a

ciphertext 𝑐′. We posit that a homomorphic encryption scheme, if

deemed incorrect, cannot be considered homomorphic by its very

nature. Thus, we have intuitively assumed its correctness in our

definitions. See Figure 1 for a formal correct overview. Also note

that we always assume fresh ciphertexts here. See subsection 2.2

for further explanations to the i-hop properties of homomorphic

encryption schemes.

Definition 2.4 (Compactness). Given the security parameter 𝜆, a

𝐶-homomorphic encryption scheme is compact if there is a poly-
nomial 𝑝 , such that for all possible keys, all 𝑓 ∈ 𝐶 and all possible

ciphertexts the size of the output of the Eval function is not big-

ger than 𝑝 (𝜆) bits, independent of the complexity of the evaluated

function f [6].

That means ciphertext growth is only dependant on the security

parameter.

Definition 2.5 (Circuit Privacy). A 𝐶-homomorphic encryption

scheme is (perfectly, statistically or computationally) circuit pri-
vate if for any keys, any function 𝑓 ∈ 𝐶 , any fresh ciphertexts 𝑐

with Enc(𝑚) = 𝑐 the distribution of the evaluation of 𝑓 over the

ciphertexts is the same as the distribution of the encryption of the

evaluated plaintexts under the function 𝑓 .4 In formulas this implies

that the distributions 𝐷1 = Eval(EK, 𝑓 , 𝑐) and 𝐷2 = Enc(PK, 𝑓 (𝑚))
should be (perfectly, statistically or computationally) indistinguish-

able [6].

Because 𝑓 (𝑚) is just another plaintext, circuit privacy implies

that an attacker can not distinguish between a fresh ciphertext

2
Often the term circuit is used instead of function because the addition and multiplica-

tion are performed bitwise, meaning addition is equivalent to XOR and multiplication

is equivalent to AND. This means every function is represented by a boolean circuit.

3
testtest

4
Circuit private is sometimes also called "strongly homomorphic".

efficient

secure

𝐶 = {allowed binary circuits}

𝐶-homomorphic encryption scheme

Correct = correct decryption and evaluation

Somewhat Homomorphic Encryption (SHE)

Compact

Max depth of function is 𝑑

Length of Eval output is independant of 𝑑

Levelled Homomorphic Encryption (LHE)

𝐶 = {all binary circuits}

Levelled fully homomorphic

Fully Homomorphic Encryption (FHE)
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Figure 1: Properties are rectangles with rounded corners,
classes are rectangles with gray background color. A dotted
arrow indicates, that the property holds for a class and a
thick arrow indicates that a class evolves from another. The
i-hop classification of the schemes is orthogonal to the other
classification. The figure is inspired by Armknecht et al. [6].

and the output of the evaluation procedure. Function privacy is a

weaker requirement than circuit privacy, where only the indistin-

guishability between the output distributions of different evaluation

functions on ciphertexts is demanded. Function privacy is some-

times also called evaluation privacy and implies that no information

about 𝑓 beyond the outputs for the queried inputs is revealed. An

overview of the comparison between circuit and function privacy

is given in Table 2. "Note that for a scheme to be circuit or function

private, the property has to hold even against an adversary that

knows the secret key and can decrypt any ciphertext." [22]

2.2 Classification
Now after the basic properties of homomorphic encryption schemes

have been discussed, the different types of homomorphic encryption

schemes can be defined. In general, HE schemes can be structurally

divided into various types and historically categorized in different

generations.

In practice (informally) there are three structurally different types

of HE, namely partially, somewhat/levelled and fully homomorphic

encryption. Partially Homomorphic Encryption (PHE) is limited to

just one type of operation, either addition or multiplication. Most of

the known PHE schemes support any number of operations (either
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addition or multiplication). "Somewhat Homomorphic Encryption

(SHE) supports mathematical operations with respect to adition

and multiplication, but is limited to a certain number of operations

(since each operation adds noise and after a certain amount of

noise is added, it is no longer possible to retrieve the data)." [25]

Finally, FHE supports both addition and multiplication, applied any

number of times to the data, therefore allowing the evaluation of

any function.

Since homomorphic encryption has not yet been standardized

and the distinction between SHE and LHE is more theoretical in

nature, they are sometimes used synonymously. In a formal cor-

rect way, however, there is a difference between these two types of

schemes and the additional distinction between the set of homomor-

phically evaluable functions/ circuits𝐶 and the ability to perform a

homomorphic operation on the output of the Eval function have to

be made. For extensive formal definitions of the various types of

homomorphic encryption, please refer to the paper by Armknecht

et al. [6].

Here only a brief overview of the formally correct definitions

is given. Given the formal definition, SHE and LHE schemes are

not constrained to support addition and multiplication but just an

arbitrary set of functions 𝐶 . This means they can also be partially

homomorphic in the informal sense.

Definition 2.6 (Somewhat Homomorphic Encryption (SHE)). A SHE
scheme is defined as a correct 𝐶-homomorphic encryption scheme

that does not necessarily have to be compact.

Definition 2.7 (Levelled Homomorphic Encryption (LHE)). A LHE
scheme is a correct, compact 𝐶-homomorphic encryption scheme

that allows only functions of a certain depth
5 𝑑 given by an auxil-

iary input. Additionally, the length of the evaluation output must

not depend on 𝑑 .6

The difference between those two types of schemes is that SHE

schemes do not have to be compact, so evaluating functions of a

higher depth can also increase the output length of the evaluation

function. LHE schemes on the other hand are compact and the

depth of functions that can be evaluated is a parameter on which

the length of the evaluation output does not depend.

Definition 2.8 (Fully Homomorphic Encryption (FHE)). A FHE
scheme is defined as a compact, correct𝐶-homomorphic encryption

scheme where 𝐶 is the set of all circuits.

This means FHE are turing complete, allowing to evaluate any

function on ciphertexts homomorphically.

The informal definitions could suggest that HE schemes allow

to perform a homomorphic operation on the output of the Eval

function. In the formal definition however the schemes have to be

correct, so the evaluation on fresh ciphertexts is guaranteed to work
but not on the output of a different evaluation. To show that a HE

scheme allows for the evaluation of functions on the output of the

Eval function, the concept of 𝑖-hop correctness is needed. Informal

5
The depth of a function or circuit is defined as the maximum number operations

applied to the input. In practice, the depth is often just the number of multiplications

and/ or additions applied to the input.

6
"If we require that𝐶 is the set of all binary circuits with depth at most 𝑑 , the scheme

is called levelled fully homomorphic." [6]

𝑖-hop correctness essentially means that a HE scheme is capable of

processing the output of the Eval function 𝑖 times.

Note: Evaluating an arbitrary function is not equal to consecu-

tively evaluating arbitrary many functions. Consider

𝑓 (. . . (𝑓 (𝑚))) := 𝐹𝑛 (𝑚) .

𝐹𝑛 (𝑚) is an arbitrary function on the plaintext𝑚, so FHE can per-

form Eval(EK, 𝐹𝑛). But FHE does not necessarily allow to perform

Eval (EK, 𝑓 (. . . (Eval(EK, 𝑓 )))) because Eval(EK, 𝑓 ) could map the

plaintext 𝑚 to a different message space, so the application of

Eval(EK, 𝑓 ) again is not valid anymore. The property of 𝑖-hop cor-

rectness is particularly important in scenarios where different en-

tities work together on processed data of someone else without

having a fresh encryption. In practice, FHE schemes are always

1-hop correct after the bootstrapping procedure.

An overview of the formal definitions of HE schemes is given in

Figure 1. For further information refer to Armknecht et al. [6].

Note: Numerous PHE schemes are known today, including RSA

(1978, multiplicative), El-Gamal (1985, multiplicative), Goldwasser

and Micali (1982, additive), and Benaloh (1994, additive) [1]. These

schemes offer faster computation compared to FHE schemes. How-

ever, their support for only one type of operation limits their applica-

tion to basic statistical calculations like counting, mean, or standard

deviation in a secure manner. The aforementioned schemes rely

on the factorization problem, the discrete logarithm problem, or

a residue problem. This reliance makes them vulnerable or poten-

tially vulnerable to attacks by quantum computers. Consequently,

this paper will not explore PHE schemes further. For additional

information on PHE schemes, please refer to the paper by ACAR et

al. [1] and the book by Koç et al. [19]. An overview of existing PHE

schemes, their supported operation, and additional information is

given in the appendix in Table 11.

2.3 History
Here we only give a short overview of the history of FHE that

can be divided into four generations [22]. In general, all known

FHE schemes today add some noise during the encryption process

that increases with each homomorphic operation until a certain

threshold is reached and the ciphertext is not decryptable any

more. To reduce the noise growth and the absolute noise of an

evaluation output different techniques have been proposed. The

FHE generations differ initially in their underlying mathematical

problems and later in the techniques used to limit noise growth

and refresh ciphertexts. A timeline showing the most important

schemes of each generation is shown in Figure 2.

The first FHE scheme was proposed by Craig Gentry in 2009

[14]. It is based on ideal lattices and introduced the bootstrapping
procedure to evaluate functions of any depth on ciphertexts. Al-

though the scheme supports batching. It is very slow in practice

due to the fast noise growth. Additionally, it is hard to implement

and vulnerable against key recovery attacks. The DGHV scheme is

another scheme of the first generation. It was proposed by Dijk et

7
Note: This is a greatly simplified historical overview. Some authors may use slightly

different dates, as they consider other papers to be the introduction of the encryption

schemes, or because they make a finer distinction between different schemes.

8
CKKS has a fast amortized bootstrapping procedure.
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Table 3: Comparison of FHE generations

SCHEMES

2nd Generation 3rd Generation 4th Generation

BGV BFV TFHE CKKS

Integer Arithmetic Bitwise operations Real Number Arithmetic

FAST OPERATIONS

scalar multiplication • • •
arithmetic • • •
non-arithmetic ◦ • ◦

PROPERTIES

fast bootstrapping ◦ • • 8
fast packing/ batching/ SIMD • ◦ •
levelled design • • •

PROS

fast

scalar multiplication number comparison polynomial approx.

linear functions - multiplicative inverse

efficient - boolean circuits DFT, logistic regression

CONS slow non-linear functions - slow non-linear functions

USAGE large arrays of numbers bitwise operations real numbers arithmetic

2009 2010 2011 2012 2013 2014 2015 2016 2017
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Figure 2: Timeline of the main FHE schemes.
■ Schemes based on ideal lattices, ■ Schemes based on AGCD,
■ Schemes based on LWE and RLWE 7

al. [26] in 2010 and is based on the Approximate - Greatest Com-

mon Divisor (AGCD) problem. It suffers from big public keys and

high computational complexity. To reduce the public key sizes the

modulo switching technique was introduced. Both schemes of the

first generation are not relevant today because their noise growth

negatively affects efficiency and security.

Nearly all the schemes following the first generation are based on

Learining with Error (LWE) or Ring Learining with Error (RLWE)

(with some exceptions based on NTRU that are not discussed here)

which leads to better-understood security assumptions. The most

important schemes of the second generation are BGV (2012) [8]

and BFV (2012) [13]. "The Brakerski-Gentry-Vaikuntanathan (BGV)

and Brakerski/ Fan-Vercauteren (BFV) schemes are the two main

HE schemes to perform exact computations over finite fields and

integers." [18] With this generation, the techniques relinearization
and modulus switching were introduced. BGV and BFV allow better

noise control, higher efficiency, a better plaintext to ciphertext ra-

tio (named packing, which allows single instruction multiple data

(SIMD) instructions) and optimizations on the bootstrapping pro-

cedure [16]. Scale invariant is one technique of this generation, to
reduce the noise growth in a variant of the BGV scheme from expo-

nential to linear, which eliminates the need for modulus switching.

NTRU-based encryption schemes are not discussed in this paper

primarily due to the necessity for significantly increased parameters

for securing such schemes against recent attacks. This increase in

parameters has led to NTRU-based schemes becoming much less ef-

ficient compared to their counterparts, resulting in their diminished

use and lack of support by any existing library [22].

The third generation started in 2013 with the introduction of

the GSW scheme and includes the GSW (2013) [15], the FHEW

(2015) [12] and TFHE (2016) [10] scheme. These schemes have a

different noise growth pattern compared to the schemes of the sec-

ond generation and are, according to Shai Halevi, less efficient but

therefore need weaker hardness assumptions [16]. With GSW the

approximate eigenvector method was introduced, which eliminates

the need for key and modulus switching techniques by reducing

the error growth of homomorphic multiplications. With TFHE, the

bootstrapping procedure and a function evaluation became possible

in one step which is known as programmable bootstrapping.
The fourth generation of FHE starts in 2017 with the CKKS

encryption scheme [9]. In general, CKKS is similar to the schemes of

the second generation but it uses approximate computation, which

is considerably faster and it allows floating-point arithmetic (by

homomorphically operating over approximations of real numbers),

which is necessary for most machine learning algorithms.

In general, schemes of the first generation are not relevant today.

Schemes of the second generation are good at performing exact com-

putations over integers on large arrays of numbers simultaneously

because the schemes allow SIMD operations, but they are not good

for depth functions where bootstrapping is required. Third gener-

ation schemes, namely TFHE, can outperform previous schemes

for bitwise operations but it does not support batching, hence the

scheme can be outperformed when large amounts of data should be

processed simultaneously. This allows CKKS to have a faster amor-

tized bootstrapping procedure than TFHE, although TFHE has the

fastest bootstrapping procedure. In general, "the fourth generation,

i.e. CKKS, is the best option for real numbers arithmetic." [22] A

final comparison of the FHE generations can be found in Table 3.
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Figure 3: Illustration of the bootstrapping technique by Mar-
colla et al. [6]
In the left column, a normal encryption and decryption is
shown. In the right column, the bootstrapping recryption
procedure is illustrated.

Through the Chimera framework [7], switching between different

encryption schemes such as TFHE, BFV, and CKKS is possible, al-

lowing the benefits of all schemes to be leveraged. For an extensive

overview of the most important schemes, their optimizations and

relations, please refer to the paper by Marcolla et al. [22].

2.4 From SHE to FHE
Generally, all contemporary FHE schemes introduce a certain de-

gree of noise during the encryption process. This noise accumu-

lates progressively with each homomorphic operation, eventually

reaching a critical threshold beyond which the ciphertext becomes

undecipherable. This inherent characteristic constrains the depth

of functions that can be evaluated. To surmount this limitation

and attain a true FHE scheme, a refresh procedure is required to

update the evaluation output, simplifying it for continued opera-

tions. According to the "Homomorphic Encryption Standard" [4] the

Refresh procedure follows one of three known techniques namely

"bootstrapping", "re-linearization" or "modulus switching".

Bootstrapping is a "recryption which works by encrypting a ci-

phertext anew (so that it becomes doubly encrypted) and then

removing the inner encryption by homomorphically evaluating

the doubly encrypted plaintext and the encrypted decryption key

using the decryption circuit." [6]
9
This technique only works, if the

evaluation algorithm can perform the decryption plus one func-

tional complete gate (e.g. NAND). The basic idea of bootstrapping

is shown in Figure 3. The bootstrapping procedure takes a cipher-

text with a large noise and outputs a new ciphertext of the same

message with a smaller fixed amount of noise.

Note: Bootstrapping creates a large computational overhead be-

cause every ciphertext has to be recrypted.

In Gentry’s first scheme an additional technique named squash-
ing was introduced to reduce the complexity of the decryption

circuit before bootstrapping. This technique was not adopted by

later schemes and is therefore not discussed here.

9
The encryption of the decryption key can be done by its own public key or another

key. See subsection 2.5 for further information.

Depending on the scheme, the output size of the evaluation is

bigger than the size of fresh ciphertexts. With re-linearization, also
called key-switching, the ciphertext size is reduced back to normal.

Dimension-modulus reduction, also called modulus switching is a

technique to convert a ciphertext 𝑐 mod 𝑞 to 𝑐′ mod 𝑝 where 𝑝 is

sufficiently smaller than 𝑞.

In general, these techniques allow the transformation from a

SHE scheme to a FHE scheme by updating the evaluation output.

This theoretically allows a FHE scheme to evaluate any function on

ciphertexts. In practice, it is beneficial to sidestep these resource-

intensive techniques by limiting the depths of the functions to be

evaluated on ciphertexts.

2.5 Security
This section provides a general overview of security notions in the

context of FHE. No encryption scheme-specific security analysis is

performed. This means that no overview of the underlying prob-

lems of LWE/ RLWE, their attacks, or recommended parameters is

given. For further information on lattice based problems refer to

the paper of Marcolla et al. [22]. More information on attacks on

lattice-based problems, their runtime, and the resulting parameter

recommendations can be found in the "Homomorphic Encryption

Standard" [4] and the Estimator tool of Albrecht et al. [5].

A HE scheme is secure, if it is semantically secure (IND-CPA
secure). Indistinguishability under chosen plaintext attack (IND-

CPA) secure means that although an attacker is allowed to ask an

oracle a polynomial number of times for the encryption of arbitrary

plaintexts (but he can not ask for the decryption of a ciphertext),

he can not distinguish between the encryption of 0 and 1 with

non-negligible probability.
10

IND-CPA security is formally defined as follows [22].

Definition 2.9 (IND-CPA Security). Let
E = (KeyGen, Enc,Dec, Eval) be a HE scheme, and𝑚𝑏 a message

with {0, 1} as the message space. Let us define an adversaryA that

knows the evaluation key EK and the public key PK and is given

an encryption EncPK (𝑚) for𝑚 ∈ {0, 1}.A can make queries to the

encryption oracle. After a polynomial number of queries, A tries

to guess whether𝑚 = 0 or𝑚 = 1. Then, the scheme is IND-CPA
secure if for an efficient adversary A, it holds that:

Pr [A (PK, EK, EncPK (0)) = 1] −
Pr [A (PK, EK, EncPK (1)) = 1] = negl(𝜆)

where (SK, PK, EK) ← KeyGen(𝜆).

Theorem 2.10. IND-CPA security is only achievable if the encryp-
tion scheme randomizes ciphertexts.

Proof. If there is no randomization, an attacker could simply

ask for the encryption of a message and compare the encrypted

output with the given ciphertext. In the definition above the mes-

sage space was restricted to {0, 1}, so the attacker just has to ask

the orcale for the encryption of 0 and 1 and can then compare the

ciphertexts to determine which message was encrypted.
11 □

10
Note: The Enc − and Dec − procedure, the public key PK and the Eval key EK are

public. Only the secret key SK is secret.

11
Some PHE schemes are not randomized, so they should not be used for homomorphic

encryption (e.g. RSA).
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According to Acar et al. [1] some SHE schemes have been proven

to be indistinguishability under (non-adaptive) chosen ciphertext

attack (IND-CCA1) secure, but no unbounded FHE scheme is yet

proven to offer this type of security.

Theorem 2.11. By their design, HE schemes can not achieve indis-
tinguishability under adaptive chosen ciphertext attack (IND-CCA2)
security.

Proof. IND-CCA2 security means, given a ciphertext 𝑐 , an at-

tacker is allowed to ask an oracle for the decryption of any cipher-

text 𝑐′ ≠ 𝑐 .

Given the ciphertext 𝑐 = 𝐸𝑛𝑐 (𝑚) the attacker encrypts a message

𝑚′ (Enc(𝑚′) := 𝑐′) and adds it to 𝑐 , resulting in 𝑐 = 𝑐 ⊕ 𝑐′. Now
the attacker asks the oracle for the decryption of of 𝑐 ≠ 𝑐 . Since the

encryption scheme is homomorphic, the following applies:

Dec(𝑐) = Dec(𝑐 ⊕ 𝑐′) = Dec(𝑐) + Dec(𝑐′) = Dec(𝑐) +𝑚′ .

Because 𝑚′ and Dec(𝑐) are known, the attacker can determine

the value of the original message𝑚, which means the encryption

scheme can not be IND-CCA2 secure. □

The lack of IND-CCA2 security has to be considered in the design

of FHE protocols, especially when they handle some ciphertext in

a special way. Consider the following example.

Example 2.12. An encryption scheme only allows the decryption

of messages > 0. Otherwise, the decryption algorithm returns

"FAIL". While watching the behavior of the decryption algorithm a

malicious server sends the false evaluation result

𝑐 ⊕ Enc(−𝑡), 𝑡 = 1, . . . , 𝑛,

until the decryption fails the first time.
12

Since the encryption

scheme is homomorphic and the decryption fails when 0 was en-

crypted, it follows:

0 = Dec(𝑐 ⊕ Enc(−𝑡)) = Dec(𝑐) + Dec(Enc(−𝑡)) = Dec(𝑐) − 𝑡 .

The attacker then knows that the original message was 𝑡 .

The example demonstrates that when applying homomorphic

encryption methods, it is crucial that an attacker cannot decrypt a

certain class of ciphertexts (for instance by observing the behavior

of the client during decryption) since they could be adaptively cho-

sen by homomorphically changing given ciphertexts. This problem

is nonexistent for non-homomorphic encryption schemes because

in general

Dec(𝑐) + Dec(Enc(𝑚)) ≠ Dec(𝑐 ⊕ Enc(𝑡)) = nonsense

holds, which allows no information retrieval. Countering such at-

tacks is beyond HE and can be solved on the security protocol level

(c.f. sloppy Alice attack on the McEliece encryption scheme and its

counterattacks). A robust protocol could for example transmit the

same data in a newly encrypted form instead of answering "FAIL"

after the decryption of a function evaluation result on the send data

failed. Due to the variance in the added noise with each encryption,

the attacker remains unaware that the newly transmitted data is

12
If the decryption fails the first time 𝑡 = −1, . . . , −𝑛 has to be tested until the

decryption does not fail any more.

identical to the previously sent data. This method effectively miti-

gates the demonstrated attack, rendering it non-threatening in this

context.

Note: Knowing arbitrary pairs (𝑚,𝑐 = Enc(𝑚)) does not allow
for the demonstrated type of attack because FHE schemes offer

IND-CPA security. For the demonstrated attack an attacker has to

be able to decrypt an adaptively chosen ciphertext. Comparing the

encryption Enc(𝑚 +𝑚′) to a given ciphertext 𝑐 or comparing 𝑐

with 𝑐 ⊕ Enc(𝑚′) for different𝑚′ is not feasible because different
random noise is added.

The previous considerations focused on HE in general. For FHE

an additional security assumption, namely Circular Security is

needed.

Definition 2.13 (Circular Security [22]). An encryption scheme

that is secure against adversaries who observe an encryption of the

scheme’s secret key under its public key is called circular secure.

All today-known FHE constructions rely on bootstrapping, which

is only possible if an encryption of the secret key under its own pub-

lic key is published. "This implies that IND-CPA security has to hold

under circular security. Most FHE schemes are not proven IND-CPA

secure under circular security, and it is in general adopted as an

additional assumption on top of the scheme’s underlying security

assumptions." [22]

If the circular security assumption does not hold, it is also possi-

ble to use a chain of private/ public keys (SK𝑖 , PK𝑖 ), 𝑖 = 1, . . . , 𝑛 and

publish only the encryption of a secret key under the next public key.

This means Enc(SK𝑖 , PK𝑖+1) is published instead of Enc(SK1, PK1).
Note, that the resulting scheme is limited in depth by the number of

key pairs. This is in practice no constraint
13

and eliminates the cir-

cular security assumption. However a weaker security assumption,

called KDM security, is needed.

Definition 2.14 (Key Dependent Message (KDM) [21]). An encryp-

tion scheme is Key Dependent Message (KDM) secure if it is secure

even against an attacker who has access to encryptions of messages

which depend on the secret key.

The difference between KDM and circular security in the context

of bootstrapping is that the first only publishes an encryption of

the secret key while the latter publishes an encryption of the secret

key under its own public key. Thus, the KDM security assumption

contains less potential structure for attacking the encryption of the

secret key.

For further information on KDM security and its proof, we refer

to the paper by Malkin et al. [21]. To eliminate also this assumption

in some LHE schemes modulus switching can be used to reduce the

noise. For optimizations bootstrapping is still often recommended,

adding the KDM security assumption again.

The security concepts discussed before guarantee the confiden-

tiality of the data but they do not prevent an attacker from delivering

wrong evaluation results. Consider a client who wants to securely

outsource the computation of a function 𝑓 on encrypted data 𝑐

to the cloud. Instead of Eval(𝑓 , 𝑐) the malicious cloud provider

13
If the Evaluation is performed by a server and the max depth is reached, this could

be communicated to the client, who then sends new key pairs. This eliminates the

depth constraint in practice.



F.P. Paul

returns Eval(𝑔, 𝑐) for some function 𝑔 ≠ 𝑓 . This means an active at-

tacker could return false evaluation results of potentially significant

consequences. The intention behind such an attack might not nec-

essarily be to harm the client, but could be motivated by the cloud

provider’s desire to conserve their own resources by evaluating a

simpler function 𝑔 instead of 𝑓 .

To overcome this threat multiple techniques can be used.

1. The easiest way would be to include data with known evalua-

tion results. This means that the client has to perform the computa-

tion on its side and compare it to the results by the cloud provider.

The higher the percentage of pre-computed evaluations that are

compared, the higher the security.

2. Another way is to run statistical tests on the returned outputs

and look for significant changes that could trigger the need for

the first technique. This could be additionally supported by a live

benchmark of the server to ensure a function of similar complexity

as the given one was evaluated. This would eliminate the incentive

to save resources.

3. Hardware techniques like Trusted Execution Environments

could also be used to ensure the right function was evaluated on

the data. This technique however needs specialized hardware that

is likely to increase the cost of outsourcing FHE computations. In

research, the focus therefore lies on mathematical-based solutions

that can run on every hardware.

Another way could be the use of homomorphic hashes or sig-

natures. The idea is that the client publishes the ciphertext 𝑐 , the

function 𝑓 that should be evaluated and a homomorphic hash func-

tion ℎ. The cloud evaluates the function on the encrypted data and

returns 𝑐𝑟𝑒𝑠 = 𝑓 (𝑐). The client can then check if the evaluation was

performed as expected by calculating ℎ(𝑐𝑟𝑒𝑠 ) = ℎ(𝑓 (𝑐)) and check

if it matches f(h(c)). This technique is relatively new and adds an

additional computational overhead, so it is not discussed in this

paper.

Note that the discussed threat of unwanted transformations of

ciphertexts (to other valid ciphertext) is also known as the mal-
leability property.14 It is also present during the transportation of

data to a third party (e.g. cloud provider). An attacker could for

example alter the content of "Send 100$ to bank account 1234" to

"Send 100$ to bank account 5678" by homomorphic addition. To

mitigate this attack during transportation, the FHE encrypted data

𝑐 must be send with an additional normal signature

𝑠𝑖𝑔(𝑐) = Enc
normal

(
ℎ(𝑐), kpriv

)
.

In this context, ℎ denotes a normal (non-homomorphic) hash func-

tion and kpriv a normal private key of the client (not the already used

one private key SK of the homomorphic encryption). The server

can check the authenticity and integrity of the data by checking

the signature. The final send message is then

(𝑐, 𝑠𝑖𝑔(𝑐)) = (EncFHE (𝑚, PK), 𝑠𝑖𝑔(𝑐)) .
Instead of just sending the FHE encrypted message with its sig-

nature, the homomorphic ciphertext can be sent by using a nor-

mal encrypted transportation protocol that offers authenticity and

integrity of the data. The advantage of this technique is that an

existing secure and standardized solutions can be used. A small

14
Non homomorphic encryption schemes are often non malleable. (See explanation

below Theorem 2.12)

𝑚1,𝑚2

𝑚𝑖 = Dec(𝑐𝑖 )
𝑚1 ∗𝑚2

Enc(𝑚1 ∗𝑚2)

Client

Cloud

𝑐𝑖 = Enc(𝑚𝑖 )

Enc(𝑚1 ∗𝑚2)

𝑚1,𝑚2 𝑐1 ★ 𝑐2

Client Cloud
𝑐𝑖 = Enc(𝑚𝑖 )

𝑐1 ★ 𝑐2

Traditional Setting FHE Setting

Dec(Enc(𝑚1 ∗𝑚2 ) ) =𝑚1 ∗𝑚2 Dec(𝑐1 ★ 𝑐2 ) =𝑚1 ∗𝑚2

Figure 4: Usage of FHE in the public cloud: In the traditional
setting on the left the ciphertexts have to be decrypted for
computations in the cloud, thereby posing a risk of data
breaches. This risk is not present in the FHE setting on the
right because calculations can be directly performed on en-
crypted data without the need of decryption.
In the graphic,𝑚𝑖 represents the plaintext, Enc and Dec de-
note the encryption and decryption function, ∗ stands for
any operation on plaintexts and ★ for the according opera-
tion on ciphertexts.

drawback is that the send message is slightly bigger because an-

other layer of encryption is added. Let k
pub

be the normal public

key of the server and PK the FHE public key of the client. In for-

mulaic terms, an additional encapsulation with standard transport

encryption means that(
Enc

normal
(𝑐, k

pub
), 𝑠𝑖𝑔(𝑐)

)
=

(
Enc

normal
(EncFHE (𝑚, PK), k

pub
), 𝑠𝑖𝑔(𝑐)

)
is transmitted.

In our previous analysis, we observed that HE entails negative

implications for security due to its inherent homomorphy. How-

ever, it is noteworthy that HE enhances security in outsourced

computations. This enhancement stems from the capability of FHE

to facilitate encryption during processing, extending beyond the

traditional confines of encryption at rest and in transit, as offered

by conventional encryption methodologies. Consequently, this en-

ables the secure offloading of computations to the cloud, obviating

the need to decrypt the data intermittently. Figure 4 shows the

advantage of FHE over traditional encryption.

An additional feature of modern FHE schemes like BGV [8], BFV

[13], FHEW [12], TFHE [10] and CKKS [9] is that they are consid-

ered to be quantum-safe because they are based on LWE or RLWE.

For the entire encryption scheme to be quantum-safe, quantum se-

curity must also apply to the circular security assumption. But since

the scheme is assumed semantically secure (also in the context of

quantum computers), an adversary can not distinguish the encryp-

tion of the secret key from the encryption of an arbitrary plaintext,

so the circular security assumption should also be quantum safe.

Additionally HE schemes can offer circuit or function privacy

(Definition 2.5). According to Shai Halevi [16] many FHE schemes

can also offer great leakage resilience15 due to their underlying

problems, namely LWE and RLWE.

An additional security feature of all sufficient HE schemes is that

they allow key evolution [4].

15
Leakage resilience means resilience against side-channel attacks.
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Definition 2.15 (Key Evolution). Key evolution allows a client to

replace a compromised secret key SK by a new secret key SK
′
, so

that semantic security still holds even for an adversary who holds

SK. The transformed ciphertexts can be decrypted only by the client

using SK
′
.

The idea behind key evolution is the same as in bootstrapping.

The difference is only that the old secret key SK has to be encrypted

under a new public key PK
′
and not its own. With key evolution,

compromised keys can be exchangedwithout decrypting the data.
16

Key evolution thus facilitates the long-term storage of sensitive

data in the cloud under regularly renewed keys. This approach fur-

ther minimizes the risks associated with brute force attacks on the

keys. For further information we recommend the "Homomorphic

Encryption Standard" [4].

In general, there is always a tradeoff between security and run-

time. In FHE, this tradeoff requires even more careful consideration,

as poor parameter selection can either compromise the encryp-

tion’s security or necessitate the extremely computation-intensive

process of bootstrapping. Practically, this means that in contrast to

conventional encryption methods, the security parameter should

not be chosen liberally but as small as is securely feasible. A very

useful and well-established resource for security-parameter selec-

tion is provided by the lattice-estimator tool, as referenced in [5].

The security analysis conducted was not specific to any particu-

lar encryption scheme and is applicable to HE in general. However,

since CKKS is the method of choice in the use case specified later,

we would like to make a note here regarding a procedure-specific

impact on security. Li and Micciancio [20] revealed a vulnerability

in the CKKS encryption scheme and its variants, where an adver-

sary with encryption access could potentially extract the secret key

through linear algebra or lattice reduction methods, especially if

they have knowledge of both the decrypted elements and corre-

sponding ciphertexts. To counteract this, they recommend against

sharing the results of decrypted messages. However, for scenarios

like secure multi-party computation where sharing plaintexts is

essential, they propose a workaround: introducing an error at the

decryption’s result to prevent such attacks.

2.6 Limitations of FHE
The principle underlying Fully Homomorphic Encryption (FHE)

renders it an ideal cryptographic solution for outsourcing compu-

tations to the cloud while maintaining data confidentiality. This

raises the question as to why the technology has not yet become

widespread in practical applications. There are three main reasons

for this: firstly, the significant computational and storage overhead

[6]; secondly, the lack of standardization; and lastly, the still com-

plicated way to use FHE implementations [22].

1. Today’s homomorphic encryption schemes are based on prob-

abilistic algorithms to guarantee IND-CPA security by introducing

an error termed noise into the encoded plaintext. With each ho-

momorphic operation, the noise growths, thereby restricting the

feasible number of operations on ciphertexts before decryption

fails. To facilitate an indefinite number of operations on ciphertexts,

resource-intensive techniques such as bootstrapping, squashing,

16
It is important to guarantee the authenticity of the data owner to prevent the adver-

sary from exchanging the keys.

Table 4: Running times of multiplying 2 bits homomorphi-
cally and the expected running time in 2024 according to
Duality [11]

Year runtime speedup speedup per year

2009 30 min - -

2014 2000 ns 9 · 108 18 · 107
2020 100 ns 20 3.33

. . .Hardware Acceleration . . .

2024 0.1 ns 1000 250

modulus switching, or relinearization are essential. However, the in-

herent increase in noise is the basis of the security of these schemes

but it also poses significant challenges in developing practical FHE

schemes. Those resource-intensive techniques can be avoided by

only evaluating low-depth functions on the encrypted data. Never-

theless, FHE remains highly computation-intensive and requires

very large keys. A general comparison with plaintext computa-

tions is not presented here, as the runtimes can vary significantly

depending on the scenario. The resource consumption (both in

terms of runtime and memory) of FHE is heavily dependent on sev-

eral factors: the specific HE method employed, the chosen security

parameter, the particular implementation, the function being eval-

uated, and the encoding technique of the plaintext. In the master’s

thesis building upon this seminar paper, a comparison is conducted

within a specific scenario, as detailed in section 5. In the future, as

has been the case in the past, significant improvements in runtime

and storage are expected. This will be achieved on two fronts: firstly,

at the hardware level through the utilization of specialized hard-

ware such as FPGAs, and secondly, at the software level through the

implementation of more efficient packing techniques. Table 4 shows

the historical improvements in the runtime of FHE multiplication

to give a hint on possible future improvements.

Another limitation of FHE is that its output is always encrypted

and can only be decrypted with knowledge of the secret key.
17

This characteristic implies that the result of branching conditions is

also encrypted, thereby making it impossible to process with unen-

crypted processors. Consequently, the data-independent execution

inherent in FHE extends to branching (as well as to the termination

conditions of loops), necessitating the evaluation of all branches.

The correct branch can only be selected at the end of this process. A

potential solution involves decrypting branching conditions on the

client side [25]. However, this requires constant communication

with the client and can significantly compromise security [25].

Another limitation of FHE, already mentioned in subsection 2.5,

is that it does not guarantee integrity, meaning the client can not

be sure that the right function has been evaluated on the encrypted

data on the server side [16]. Additionally, it has to be mentioned

that HE does not allow to keep the evaluated functions secret.

As mentioned in Theorem 2.5 HE only offers that no information

about the evaluated function can be retrieved from the output of

the Eval procedure. But if a client sends for example an encrypted

17
This is in contrast to obfuscation and functional encryption. See subsection 2.7 for

further information.
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neuronal network and encrypted data to the cloud, only the weights

of the network are encrypted. Its structure is fully disclosed to

the server. Hiding the algorithm applied to the data is subject to

obfuscation research [6]. See subsection 2.7 for further information.

If the algorithm and the data are owned by different entities both

the data and the algorithm can be kept secret. The hiding of the

algorithm however results from the fact that the algorithm never

leaves the secure environment of the algorithm owner (see Use

Case 2). So secret function evaluation is not achieved by HE.

Some authors cite the requirement to encrypt all data under a

single key as a limitation [16]. However, as this is also a characteris-

tic of traditional encryption methods, we contend that this does not

constitute a significant restriction in our view. Additionally, there

are already methodologies supporting what is known as multi-key

FHE (see Use Case 6).

2. First standardization efforts were initiated in 2017 by the con-

sortium "HomomorphicEncryption.org," comprising industry, gov-

ernment, and academic researchers from entities such as IBM, Mi-

crosoft, Intel, the NIST, and others [4]. While the standardization

process has not reached completion, preparatory documents have

been issued by the ISO. These endeavors are anticipated to culmi-

nate in an established standard in the foreseeable future. However,

as of the present, the absence of a finalized standardization remains

a constraining factor, also limiting the trust in the technique. In

the future, the standardization of FHE could be its main advantage,

as FHE operates independently of data and can evaluate any func-

tion. This implies that any evaluation of private functions becomes

standardized once FHE is standardized. In combination with stable

open source libraries like OpenFHE this will likely increase the

trust and the adoption of FHE. While specific use cases may have,

and will continue to have much better privacy-preserving solutions,

these solutions must be standardized within their respective data-

or function-dependent scenarios.

3. To develop FHE applications at the moment, an extensive

understanding of HE is essential [22]. This encompasses various

aspects, including parameter selection, plaintext encoding, efficient

packing, and approximating high-level functions with the basic

FHE operations of addition and multiplication.
18

This highly limits

the practical usability of FHE at the moment. Current developments

in HE compilers and other high-level tools aim to automate the

transformation of high-level programs, such as machine learning

models, into FHE-based implementations. Consequently, FHE is

becoming increasingly user-friendly, potentially enabling the fully

automated conversion of existing algorithms into their FHE equiv-

alents, thereby minimizing (or entirely eliminating) the need for

additional engineering.

Beyond the additional engineering efforts required for develop-

ing FHE-compatible algorithms, key management systems must

also be adapted, as FHE solutions necessitate the handling of evalu-

ation keys.

Note: Here no extensive analysis of function approximations

in such compilers is given. In general, FHE allows the evaluation

of a functional complete set of operations so the existence of an

arbritrary close approximation is given. In general functions like

18
It must also be considered whether these approximations introduce any bias into

the computational results.

Table 5: Main limitations of FHE and their solution

Limitation potential solution

computational overhead Hardware acceleration and

better packing techniques

lack of standardization Homomorphic Encryption Standard [4] and

stable open source libraries

hard to use High level compilers like HElayers

FHE

MKFHE

TMKFHE

LHE/ SHE

PHE

evolution

functional encryption obfuscation

allows to construct FHE

interactive

transciphering

modes

searchable symmetric encryption

structured encryption

Trusted Execution Environments (TEEs)

Multiparty Computation (MPC)

alternatives

key evolution

proxy re-encryption

features of FHE

zero knowledge proofs

homomorphic signatures/ hashes

FHE is building block for

verifiable computation

homomorphic authenticated encryption

can be build from homomorphic hashes

+ control over

evaluatable function

+ result unencrpyted
− embedding secret key

in published program

Privacy-Enhancing Cryptography (PEC)

Figure 5: Overview about technqiues related to FHE. FHE
stands as a key component in the realm of privacy-enhancing
technologies, currently being explored in a dedicated project
at the NIST.

comparison, min or max are most efficiently approximated using

circuits and encryption schemes of the third generation.
19

In most

other cases a polynomial approximation is feasible.

In concluding this chapter on the limitations of FHE, we have

observed that the three primary current constraints of FHE are

being progressively mitigated or resolved, as shown in Table 5.

This advancement paves the way for an anticipated increase in the

adoption of FHE technologies.

2.7 Beyond Homomorphic Encryption
Besides FHE , there are two additional cryptographic concepts that

apply functions to data and are intertwined with FHE, namely

Functional Encryption (FE) and Obfuscation.

Definition 2.16 (Functional Encryption (FE)). Possessing a master

key MK and a function 𝑓 , FE enables the derivation of a secret key

SK. "Given a ciphertext, the secret key allows the user to learn the

value of f applied to the plaintext and nothing else."[6]

19
If the min or max is calculated it has to be kept in mind that the encryption is not

order-preserving.
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The difference between FHE and FE is that FE allows to control

which functions can be applied to the data (by the derived secret

key that depends on the function f) and a key can be used to get

the evaluation result unencrypted.
20

FHE on the other hand allows

anybody with the evaluation key to apply any function to the

encrypted data and the result is always encrypted. Only the owner

of the secret key can get the plaintext result. FE can be used to

construct FHE if the functions are applied to encrypted data.

Definition 2.17 (Obfuscation). "Obfuscation was originally de-

signed to be conceptually similar to black box computation, where

one gains knowledge of inputs to the black box, and outputs from

it, but nothing else." [6]

An obfuscated program incorporating both public and private

keys can be created to decrypt the input, apply the necessary func-

tion, and then re-encrypt the result. This means one could construct

a FHE scheme from obfuscation, but it is important to note that

the security implications of embedding secret keys in a published

program must be carefully evaluated.

Besides functional encryption and obfuscation, HE can be uti-

lized as a building block for generating zero-knowledge proofs,

allowing delegation of computation, or creating homomorphic sig-

natures [6]. Delegation of computation enables the verification of

whether an outsourced computation was correctly performed and

is closely related to homomorphic signatures, homomorphic hashes,

verifiable computation, homomorphic authenticated encryption and

homomorphic authentication. Additionally the bootstrapping pro-

cess in FHE schemes allows key evolution (refer to Theorem 2.15),

which can be applied to proxy re-encryption as well [22].

Instead of FHE searchable symmetric encryption or structured en-
cryption could be used for fast database lookups or data mining in

general. Hardware-based solutions like Trusted Execution Environ-
ments (TEE) could also serve as an alternative to, or in combination

with, HE.

TEEs could guarantee the evaluation of the right function or

they could be used to perform highly complex operations on in-

termediate evaluation results unencrypted. The security of such

hybrid solutions must be analyzed individually in each case. For

instance, a plaintext operation within a Trusted Execution Envi-

ronment should always be conducted on heavily processed and

aggregated data, which do not allow for inference about individual

data points.

FHE could also be used to support multi-party computations,

where multiple entities evaluate a function on all the input data

while keeping their individual inputs private from each other.
21

Multi-key FHE (MKFHE) offers a framework for developing multi-

party schemes, yet it necessitates the participation of all parties,

as the failure of any single party could compromise the entire

protocol. Threshold Multi-key FHE (TMKFHE) provides a more

robust solution by tolerating the failure of a limited subset of parties.

However, ensuring active security in such a setup requires the

incorporation of additional mechanisms, such as Zero-Knowledge

20
"FE is similar in essence to identity-based encryption and attribute-based encryption."

[6]

21
The usage of proxy re-encryption to encrypt the data of all entities under the same

new key is not sufficient for multi-party FHE, because it is not resilient to weak

collusion attacks between one entity and the proxy.

Table 6: Simplified comparison of FHE, MPC and TEE. MPC
has a large communication overhead, FHE is computational
expensive and TEEs are often proven to be vulnerable against
side-channel attacks.

FHE MPC TEE

no communication • ◦ •
no computational overhead ◦ • •
no known attacks • • ◦
security based on LWE, RLWE protocols hardware

Proofs.
22

The exploration of Multi-party FHE extends beyond the

scope of this work. In the Homomorphic Encryption Standard [4]

TMKFHE is formalized on an abstract level as distributed HE. To

gain insight into the practical application of FHE within multi-

party use cases, as well as to access additional references, refer to

Figure 16 in "Survey on Fully Homomorphic Encryption, Theory,

and Applications" by Marcolla et al. [22]. Besides extending FHE

to multi-party scenarios, interactive FHE is also conceivable. In

interactive FHE, computationally intensive operations (such as

bootstrapping) are performed on plaintexts by the client and the

resulting encrypted data is sent to the server. While this approach

may seem to contradict the principle of outsourcing computation,

limiting it to a few operations with exceptionally high overhead

can be justifiable. An overview of the mentioned techniques and

their relation to FHE is given in Figure 5.

FHE, in conjunction with homomorphic signatures, hardware

solutions like trusted execution environments, and zero-knowledge

proofs for active security could stand at the forefront of crypto-

graphic solutions for secure cloud usage in a multi-party context.

Generally, the future will likely see the combination of various

cryptographic techniques with FHE as the optimal way to secure

the outsourcing of processing while ensuring the confidentiality of

data.

Note: MPC and TEEs are both seen as an alternative to FHE/

MKFHE. Each of these technologies offers distinct trade-offs be-

tween security, computational overhead, and communication over-

head. FHE provides strong data confidentiality with minimal com-

munication needs at the cost of high computational overhead. MPC

allows computation on data distributed among multiple parties

with strong security guarantees but requires significant communi-

cation. TEEs offer an efficient way to securely process data with

minimal communication overhead but depend on the security of the

hardware implementation and are susceptible to certain types of

attacks. A comparison of the three technologies is given in Table 6.

The choice between these technologies depends on the specific

requirements of the application, including the types of data being

processed, the computational resources available, and the threat

model considered. The robust security offered by FHE, combined

with its adaptability in multi-party scenarios without significant

communication overhead, positions it as a highly valuable technol-

ogy. Its applicability is further enhanced by the ability to offload

22
Passive security means parties follow the protocol and try to extract information.

Active security means parties are allowed to deviate from the protocol and send for

example wrong shares of information.
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the substantial computational demands to potentially more cost-

effective, unregulated environments. This flexibility underscores

FHE’s potential in broadening the scope of secure computational

outsourcing.

3 FHE SCHEMES AND IMPLEMENTATIONS
Among the most widely used and implemented SHE schemes are

BGV, BFV, FHEW, TFHE, and CKKS.
23

The BGV, BFV, and GSW schemes are outlined in the Homomor-

phic Encryption Standard, with CKKS positioned as a prospective

addition. Selecting an appropriate scheme is complex, necessitat-

ing a nuanced understanding of various factors to optimize perfor-

mance across different architectures and use cases. A useful starting

point for this selection is Table 3 detailing typical characteristics of

the schemes of each generation, though it’s essential to recognize

that actual resource consumption will significantly depend on the

specific implementation.

Presently, a multitude of FHE library implementations exist,

some of which are highlighted in the Homomorphic Encryption

Standard [4] and the survey by Marcolla et al. [22]. These imple-

mentations broadly fall into two categories: libraries and compil-

ers/frameworks. FHE libraries primarily provide access to scheme

operations through an API, including fundamental functionalities

like KeyGen, Enc,Dec, and Eval, alongside additional features for

ciphertext management (e.g., noise growth control) and operations

such as homomorphic addition and multiplication. The onus of

correct API utilization rests on developers, necessitating a deep

understanding of each function within privacy-preserving applica-

tions.

Conversely, FHE compilers serve as high-level tools that abstract

the complexities of FHE library APIs, thereby enabling a broader

spectrum of developers to securely implement privacy-preserving

mechanisms. These compilers address prevalent engineering chal-

lenges in FHE application development, including parameter selec-

tion, plaintext encoding, data-independent execution, and cipher-

text maintenance. A practical alternative to software optimizations

are hardware accelerators that will likely expand the scope of feasi-

ble FHE applications.

Given the dynamic nature of implementations, an exhaustive

enumeration of libraries and their features is not provided here. Ap-

pendix A gives only a short overview of the most important encryp-

tion schemes (Table 8), libraries (Table 9), frameworks/compilers

(Table 10), and the entities behind their development. An empirical

comparison of libraries such as SEAL, Helib, HEAAN, FHEW, TFHE,

and Palisade is conducted in the FHEBench study by Jiang and Ju

[17], offering valuable insights for selecting suitable schemes and

implementations for performing specific operations. Notably, many

FHE libraries forego bootstrapping due to its prohibitive compu-

tational cost, limiting the number of feasible multiplications and

influencing the choice of implementation for particular use cases.

23
The CKKS scheme, initially termed HEAAN, is now recognized by the research com-

munity by the acronym CKKS, which reflects the authors’ last names. The designation

HEAAN is now applied to the corresponding library [22].

Table 7: Different types of adversaries

type of adversary behavior

semi-honest/ follows protocol,

honest but curious record data and try to recover information

malicious

most powerful adversary,

allowed to deviate from the protocol,

inject false data,

manipulate data,

record data and try to recover information,

return false Eval output

covert

malicious adversary with penalties

when deviating behavior is detected

4 POSSIBLE USE CASES
FHE allows for a variety of use cases. In general, there are three

main types of adversaries that have to be considered in a use-case

analysis: semi-honest, malicious and covert. See Table 7 for an

overview of adversary types.

Figure 6 presents a comprehensive overview of potential FHE

applications in general. The depicted scenarios presuppose a semi-

honest adversary model and utilize a non-interactive FHE approach.

Should the threat model extend to malicious or covert adversaries,

it necessitates the integration of supplementary techniques along-

side FHE to ensure robust security measures. The simplest use

case is the outsourcing of computation while guaranteeing data

confidentiality.

Use Case 1 (Outsourcing Computation). In this use case, the
data owner is also the model owner. Encrypted data, possibly alongside
an encrypted model, is sent to the cloud for evaluation. The cloud
processes the model on the encrypted data and returns the result, also
encrypted.

This setup ensures data encryption throughout the process (refer

to Theorem 2.9), facilitating computation outsourcing to a cost-

effective, unregulated environment. Examples include encrypted

data database queries or machine learning inference outsourcing,

where a pre-trained model
24

is encrypted and stored in the cloud

for evaluation on encrypted inputs. The data and the model weights

are kept private, but the model structure is exposed.

Use Case 2 (Outsource Data). In this use case, a data owner
transmits their encrypted data to the model owner, who then evaluates
the model homomorphically and returns the encrypted results to the
data owner.

This approach enables the assessment of external models on

personal data without compromising data confidentiality. A sig-

nificant benefit is the protection of the model and its structure

from exposure. This scenario is particularly appealing to companies

24
Typically, machine learning models are trained without encryption due to the signif-

icant computational overhead associated with FHE.
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developing AI models, potentially utilizing AI-specific hardware

available to the model owner.

Use Case 3 (Outsource Model). In this use case, a model owner
encrypts and sends their model to a data owner, enabling the model’s
evaluation on data not owned by the model owner.

This approach is particularly valuable when encrypted data can-

not be shared due to regulatory constraints, and it allows the provi-

sion of a trained model to customers without disclosing the model’s

weights, thus safeguarding training data information. The evalu-

ation occurs on the data owner’s side, facilitating decentralized

model assessment. Applications include cross-bank model evalua-

tions and government-issued encrypted models for real-time fraud

detection on bank data, without revealing model weights.

Use Case 4 (Shared Outsourced Computation I). In this use
case, data and model owners send their encrypted data and model,
respectively, to the cloud, outsourcing the entire computation. This
could leverage specialized hardware in the cloud and may reduce costs
due to cloud competition, maintaining privacy through encryption. It
presupposes a non-collusion assumption between the cloud and the
secret key holder (in this case the data owner).

In the event of collusion between the data owner and the cloud,

the cloud could transfer the encrypted model to the data owner for

decryption with their private key, posing a risk of model exposure.

A significant vulnerability in this scenario is the potential for model

compromise due to poor key management by only a single data

owner (of possible many). The main application of this scenario

is the usage of a proprietary AI model of a different company and

outsourcing the computation to the cloud. This scenario is primar-

ily intended for employing proprietary AI models from another

company and outsourcing computational tasks to the cloud.

Use Case 5 (Shared Outsourced Computation II). This sce-
nario parallels Use Case 4, with the distinction that the model owner
possesses the secret key, necessitating an assumption of non-collusion
between the cloud and the model owner.

This use case facilitates outsourcing both the evaluation process

and evaluation on external data. Only the model owner, holding the

exclusive knowledge of the secret key, can decrypt the evaluation

results. To overcome this limitation controlled randomness (noise)

should be added to the plain evaluation results to mitigate the risk

of key compromise when results are shared with the data owner.

Use Case 6 (Multi Party Computation). The previous men-
tioned use cases can be extended to a multi-party scenario, involving
multiple data owners each encrypting their data with a unique key.

This facilitates the analysis of data across different entities with-

out compromising confidentiality. Such a setup showcases the sig-

nificant advantages of FHE, particularly its capability to outsource

computations on data from diverse sources securely. However, a

notable limitation is the further reduction in computational speed

compared to standard FHE applications.

To conclude FHE enables leveraging the computational power

of the cloud — unregulated and potentially more cost-effective

(including the leveraging of specialized hardware) — without com-

promising the privacy of processed data. FHE facilitates performing

any operation on encrypted data, making it ideal for outsourcing

computations such as:

• Machine learning (including Neuronal Networks, Random

Forests, XGBoost, etc.),

• Basic statistical analyses (such as calculating mean, stan-

dard deviation, ARIMA, etc.), and

• Database queries (like set intersections and more).

It additionally facilitates the provision of encrypted models with-

out disclosing the weights (and the architecture in specific scenarios

- see Use Case 2). Looking ahead, multi-party FHE is poised to be-

come more feasible, enabling the execution of operations on data

from different sources.
25

Moreover, all the outlined use cases can be executed in an interac-

tive mode, wherein certain operations are conducted on plaintexts

by the holder of the secret key, thus optimizing computational

resources while maintaining data confidentiality.

Instead of sending FHE-encrypted data, data can be sent to the

cloud encrypted with AES, alongside the AES key encrypted with

FHE. This provided data enables the cloud to replace AES encryp-

tion with FHE encryption, facilitating the execution of homomor-

phic operations on the encrypted data. Notably, during this encryp-

tion substitution, the data remains encrypted at all times (as during

bootstrapping). For a detailed illustration of how transciphering

operates, refer to Figure 1 in the paper by Aharoni et al. [3].

This technique, known as Transciphering, circumvents the need

for direct FHE encryption of all data by requiring only AES en-

cryption of the data. This results in less transferred data because

the expansion ratio of FHE encryption (2:1) is much higher than

with AES encryption (1:1) [3]. The evaluation result is sent back

FHE encrypted to the client. Decrypting FHE-encrypted results is

generally not very resource-intensive, especially since the evalu-

ation outputs (like classification results or aggregated statistics)

are typically small. So Transciphering could allow for significant

outsourcing of most of the FHE encryption process.

25
The bank of the future might securely outsource the complete transaction processing

in an encrypted manner to the cloud. Currently, the primary focus of FHE in the

financial industry is on conducting data analysis using machine learning on financial

data.
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Figure 6: The figure describes FHE use cases, outlining the adversary type in the left column and indicating the computational workload locations with a
cloud symbol. A lock symbol specifies what is encrypted and transmitted via FHE: ’M’ for Model/Algorithm, ’D’ for Data, and ’res’ for the evaluation result.
The right column suggests possible modes for each use case, including sending data encrypted with AES and converting it securely into FHE encryption in
the cloud [3], and performing FHE evaluation in interactive mode to save computing resources by conducting partial computations on plaintexts by the
secret key owner [2].
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5 CONTRIBUTION
This paper provides foundational knowledge on FHE tailored for be-

ginners. Unlike other surveys on the topic, it emphasizes a practical

and theoretical perspective with easy-to-understand explanations,

avoiding overly simplified or formally incorrect generalizations.

The main contributions of this paper, distinguishing it from

others include:

• A clear distinction between plaintext and ciphertext oper-

ations, adding efficiency and security as key attributes of

homomorphic encryption schemes.

• A concise delineation of 𝑖-hop correctness within FHE, en-

hancing understanding.

• A streamlined history of FHE, facilitating a comprehensive

yet succinct comparison across different generations of

FHE.

• The chapter "From SHE to FHE" introduces essential tech-

niques and terms, including all synonymous expressions,

which is novel. This aids in better comprehension during

further literature review.

• In the "Security" chapter, IND-CPA security is formally

defined, and the necessity for noise management is proven.

Moreover, the absence of IND-CCA2 security is not only

formally demonstrated, but its practical implications are

also elucidated.

• The differentiation between key dependent message secu-

rity and circular security presents a new insight offered by

this paper.

• While the issue of incorrect evaluation results was pre-

viously recognized, this survey provides an overview of

techniques to mitigate such attacks.

• It specifically addresses the need for additional signatures

when transferring homomorphically encrypted data, con-

trasting this with the use of traditional transport encryp-

tion.

• A detailed discussion of the limitations of FHE and its posi-

tioning within the cryptographic domain represents a novel

contribution.

Additionally, providing a comprehensive overview of all poten-

tial use cases marks an unprecedented effort in the field.

The comparison between FHE, MPC and TEEs emphasizes the

necessity of benchmarking the actual computational overhead as-

sociated with FHE. This evaluation constitutes the focus of the

subsequent master’s thesis.

Future Work
In the master thesis building upon this paper, an empirical analysis

(benchmarking) of the CKKS scheme’s utility for machine learning

using XGBoost on the Bank Marketing dataset is conducted. The

primary objective is to predict whether a client will subscribe to

a term deposit [23]. The defined use case involves the data owner

also being the model owner, with computational tasks outsourced

to a server that is semi-honest but not trusted, thus eliminating

concerns over incorrect evaluation results in this scenario (see Use

Case 1).

To assess the practicality of this setup, two distinct operational

modes are examined: the "all-in-one" scenario, where a pre-trained

XGBoost model, along with the data, is deployed to the cloud within

a docker container, and the "batched" scenario, in which the model

is maintained in a docker container on the cloud, with data trans-

mitted via S3 buckets.
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A ADDITIONAL INFORMATION
Most active companies in FHE [4, 22]

• IBM

• Microsoft

• Duality Technologies

• Zama AI

• Cryptolab

• Google

• Intel

B ADDITIONAL NOTES
Runtime comparison of FHE vs. plaintext computation [11]

Often, the runtime of FHE is compared to plaintext runtimes. A

realistic goal for the future is to achieve homomorphic multiplica-

tion on dedicated hardware at speeds comparable to conventional

multiplication in software on a CPU. However, in some scenar-

ios, comparing with plaintext computations is not meaningful. For

instance, FHE enables financial crime investigation on encrypted

data within minutes, a process that would typically require a ju-

dicial order, taking days to obtain. Furthermore, FHE opens up

unprecedented possibilities. For example, Threshold Multi-key FHE

is expected to facilitate the practical evaluation of data from various,

mutually distrustful sources in the future.

FHE vs. use case specific solutions
Sometimes, solutions specific to particular use cases may be more

practical than FHE. Themain issue with highly specialized solutions

is often the lack of in-house and industry-wide expertise, along with

the absence of standardization. Nonetheless, before deploying FHE,

the use of well-known techniques should always be evaluated. For

instance, salt could be utilized to compute private set intersections.

Intellectual Property Rights [11]
The Intellectual Property Rights (IPR) situation requires clarifica-

tion. IBM possesses a broad patent on FHE, while Seoul National

University has a patent on CKKS schemes. However, the validity

and scope of these patents remain uncertain. So the selection of an

encryption scheme has to be influenced by considerations related

to Intellectual Property Rights.

https://doi.org/10.1109/JPROC.2022.3205665
https://doi.org/10.1109/JPROC.2022.3205665
https://eprint.iacr.org/2022/1602
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Table 8: Most important HE schemes [17]

Operation BFV [13] BGV [8] CKKS [9] FHEW [12] TFHE [10]

Native Add/Sub • • • ◦ ◦
Native Mult • • • ◦ ◦

SIMD • • • (•) (•)
Boolean Logic ◦ • ◦ • •

< 1𝑠 Bootstrapping ◦ ◦ ◦ • •

Table 9: Most important HE libraries [4, 22]

Library Language

Schemes

BGV BFV FHEW TFHE CKKS

i
n
H
e
L
a
y
e
r
s

HEAAN C++ ◦ ◦ ◦ ◦ •
HElib C++ • ◦ ◦ ◦ •

PALISADE C++ • • • • •
OpenFHE C++ • • • • •
Lattigo Go • • ◦ ◦ •
SEAL C++/ C# • • ◦ ◦ •

FHEW C++ ◦ ◦ • ◦ ◦
TFHE C++/ C ◦ ◦ ◦ • ◦

concrete Rust ◦ ◦ ◦ • ◦
RNS-HEAAN C++ ◦ ◦ ◦ ◦ •
FV-NFLlib C++ ◦ • ◦ ◦ ◦
CuFHE Cuda/C++ ◦ ◦ ◦ • ◦
NuFHE Python ◦ ◦ ◦ • ◦

Table 10: Most important HE compilers [22]

Compiler Language Library

HElib SEAL PALISADE FHEW TFHE HEAAN

ALCHEMY Haskell ◦ ◦ ◦ ◦ ◦ ◦
Cingulata C++ ◦ ◦ ◦ ◦ • ◦

E
3

C++ • • • • • ◦
SHEEP C++ • • • ◦ • ◦
EVA C++ ◦ • ◦ ◦ ◦ ◦

Marble C++ • • ◦ ◦ ◦ ◦
RAMPARTS Julia ◦ ◦ • ◦ ◦ ◦
Transpiler C++ ◦ ◦ • ◦ • ◦
CHET C++ ◦ • ◦ ◦ ◦ •

nGraph-HE C++ ◦ • ◦ ◦ ◦ ◦
SEALion C++ ◦ • ◦ ◦ ◦ ◦
HElayers C++, python API • • • ◦ ◦ •



F.P. Paul

Table 11: Homomorphic properties of well-known PHE schemes [1]

Homomorphic Operation

Scheme Year Add Mult security note

RSA 1978 ✓ factoring

Goldwasser and Micali 1982 ✓ quadratic residuosity first probabilistic

El-Gamal 1985 ✓ discrete logarithm

Benaloh 1994 ✓ higher residuosity

Naccache and Stern 1998 ✓ composite residuosity extends benaloh

Okamoto and Uchiyama 1998 ✓ p-subgroup assumption improves performance of old schemes

Paillier 1999 ✓ composite residuosity probablistic

Damgård and Jurik 2001 ✓ generalize Paillier

Galbraith 2002 ✓ elliptic curves generalize Paillier

Kawachi et al. 2007 ✓ lattice problems
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