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ABSTRACT

Fully Homomorphic Encryption (FHE) is a groundbreaking cryp-
tographic technique that enables computation on encrypted data,
maintaining confidentiality even during processing. This technol-
ogy is increasingly relevant due to stringent privacy laws like the
General Data Protection Regulation (GDPR) and the rise of sig-
nificant and costly data breaches in cloud environments. It holds
immense potential in many sectors such as healthcare, for secure
analysis of encrypted patient records, or finance, for confidential
processing of financial data in unregulated environments.

This paper aims to provide foundational knowledge on FHE,
position it within the field of cryptography, review key schemes
and implementations, and specifically explore its practical use cases.

1 INTRODUCTION

Fully Homomorphic Encryption (FHE) stands as a pivotal innova-
tion in the realm of cryptography, hailed as the "holy grail’ [22] for
its ability to process any function on encrypted data, without ever
needing to decrypt them into plaintexts. Traditional encryption
techniques only allow encryption at rest. FHE on the other hand
allows encryption at processing, thereby preventing data extrac-
tions throughout the computation process. The significance of FHE
is magnified in an era where data breaches and privacy concerns
are rampant, which exposed the personal information of millions
of individuals. and where legislation such as the European Union’s
General Data Protection Regulation (GDPR) mandates stringent
data protection measures.

The concept of FHE was first introduced in 1978 by Rivest, Adle-
man, and Dertouzos, who envisioned the idea of ’privacy homo-
morphisms’ — a precursor to what we now understand as FHE [24].
While RSA, a widely-known cryptographic system developed in
1977 by Rivest, Shamir, and Adleman, is often cited as an early exam-
ple of a scheme supporting a single homomorphic operation, it does
not represent the full scope of FHE. Early systems like RSA demon-
strated the potential for homomorphic properties, but they were
limited, supporting only specific types of operations on ciphertexts.

The realization of FHE schemes, where an arbitrary function can
be performed on encrypted data, remained elusive until Craig Gen-
try’s groundbreaking work in 2009 [14]. Gentry’s research marked
a turning point, demonstrating for the first time how to construct
a system that could handle an unlimited number of both addition
and multiplication operations on encrypted data by introducing
the concept of bootstrapping. Since then, the field has seen a pro-
liferation of new constructions and schemes, each contributing to
the advancement and practical feasibility of FHE.

The applicability of FHE extends across numerous sectors, en-
abling secure data processing within cloud environments by effec-
tively preventing unauthorized data extraction through encryption.
In the healthcare industry, for instance, FHE empowers researchers

to securely analyze encrypted medical records, deriving critical
insights without compromising patient confidentiality. Similarly, in
the financial domain, FHE plays a pivotal role by allowing the secure
processing of encrypted financial transactions and their analysis
with machine learning in unregulated cloud-based environments.

However, a significant limitation of FHE is its substantial com-
putational overhead. Consequently, this paper investigates possible
use cases and the practical applicability of FHE.

Organization: The remainder of the paper is organized as follows:
In section 2, Fully Homomorphic Encryption (FHE) is thoroughly
defined, analyzed, and positioned within the field of cryptography.
Specifically, subsection 2.1 discusses the properties of FHE, and
subsection 2.2 defines various types of homomorphic encryption.
Subsection 2.3 delves into the historical development of FHE, allow-
ing subsection 2.4 to provide a brief overview of the methods for
achieving FHE. Subsection 2.5 conducts a comprehensive security
analysis of FHE, followed by an examination of its limitations in
subsection 2.6. Homomorphic encryption is then situated within the
cryptographic field and delineated from other methods in subsec-
tion 2.7. Subsection 3 offers a brief overview of current encryption
schemes and their implementations. Subsequently, section 4 defines
potential use cases, thereby concluding the theoretical analysis of
FHE in general. Section 5 describes the new contributions in this
paper and outlines the practical work following this survey.

Preliminaries: No specific prior knowledge is required to read
this paper. A basic understanding of different security definitions
is helpful but not essential.

Notation: In this paper, m generally denotes a plaintext message,
and c represents the corresponding ciphertext. The symbol f is used
to denote an arbitrary function/circuit from the function/circuit
space C. The security parameter of the encryption schemes is de-
noted by A, while the various keys in homomorphic encryption
schemes are represented by SK,PK, and EK for the secret, pub-
lic, and evaluation keys, respectively. For traditional encryption
methods, kpriv and kpyp, are used to denote the private and public
keys. The homomorphic encryption procedures encryption, decryp-
tion, and evaluation are denoted by Enc, Dec, and Eval, respectively.
For improved readability, the specification of individual parame-
ters of these procedures are sometimes omitted. In contexts where
both classical and homomorphic encryption are utilized, the sub-
scripts serve to specify the encryption scheme in question. For
example, Encyormal and Encpyg are used to distinguish between
non-homomorphic and homomorphic encryption, respectively. The
symbol p denotes an arbitrary polynomial, h represents any hash
function, d indicates the depth of a function/circuit, Pr denotes a
probability, and "negl" stands for a negligible probability. At the
level of individual operations, +, -, and * denote the plaintext oper-
ations of addition, multiplication, and an arbitrary plaintext opera-
tion, respectively. The equivalent operations on the corresponding



ciphertexts are denoted by ®, ©, and *. For an arbitrary function f
we do not differentiate between the evaluation of f on plaintexts
and ciphertexts.

2 HOMOMORPHIC ENCRYPTION

An encryption scheme! is called homomorphic over an operation
if given some ciphertexts, the operation over the plaintexts can
be performed without decryption by manipulating the ciphertexts
directly [22]. Formally (correct) homomorphic encryption over an
operation is defined as follows.

Definition 2.1 ((Correct) Homomorphic Encryption). Given an en-
cryption scheme with the encryption function Enc, the decryption
function Dec and two plaintexts m1, my with their respective cipher-
texts ¢; = Enc(my), c2 = Enc(mg). The encryption scheme is called
(correct) homomorphic over an operation *, if the operation * on the
plaintexts can be directly performed with its analog operation *
on the ciphertexts such that

my * my = Dec(Enc(m1) * Enc(m3)) = Dec(cy * ¢2)
holds.

The ability to evaluate any function homomorphically is achiev-
able if addition and multiplication can be performed homomor-
phically and can be iterated, since they constitute a functionally
complete set over finite rings. In particular, any boolean (arithmetic)
circuit can be expressed solely through the use of XOR (addition)
and AND (multiplication) gates [1]. Bitwise addition and multipli-
cation are thus regarded as foundational operations within FHE
schemes.

Note: Rotation is also considered a base operation in FHE schemes.
This operation, particularly when applied to a ciphertext containing
multiple packed plaintexts, facilitates the rearrangement of various
plaintext slots. Such a capability significantly contributes to the
optimization of implementations for higher-level computational
operations.

is defined as a tuple of four probabilistic algorithms, namely

Formally correct a Homomorphic Encryption (HE) scheme as a
tuple of four probabilistic algorithms, namely KeyGen, Enc, Dec,
and Eval. The KeyGen algorithm essentially takes as input the
security parameter A and outputs a secret key SK, a public key
PK, and an evaluation key EK. The Enc procedure takes a message
m, encrypts the message under the public key PK and outputs the
ciphertext c. The Dec algorithm decrypts a ciphertext c to a plaintext
m, given the secret key SK.

The Eval procedure is what makes HE schemes special. Given
the evaluation key EK, a function f, and a ciphertext ¢ the Eval
procedure outputs a ciphertext ¢’. We assume a correct HE scheme
here, so the output of the Eval function is corresponding to the
functioned plaintexts, so the following holds:

Dec(c’) = Dec[Eval(EK, f,¢)] = f(m).

The ciphertext ¢ and the plaintext m can be a vector of cipher- or
plaintexts, e.g. ¢ = (c1, ¢2). FHE schemes also have the additional
"Refresh" procedure that takes a ciphertext c1, the evaluation key

This paper only covers asymmetric homomorphic encryption schemes. It does not
discuss symmetric FHE schemes, given their relatively restricted utility in cloud
computing.
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Table 1: Comparison of HE vs. normal encryption
The Refresh procedure is only needed for FHE schemes and
is often avoided in LHE.

‘ classic encryption ‘ homomorphic encryption

SK . .

keys PK . .
EK o .

KeyGen . .

Enc . .

procedure Dec . .
Eval o .

Refresh o °

EK and a multi-valued flag as inputs and returns a new ciphertext cy
that encrypts the same plaintext as c1. The desired property of the
Refresh function is to transform a complex ciphertext into a "simple"
one, allowing more homomorphic operations to be performed on
the fresh ciphertext. "Therefore either the bootstrapping procedure
(flag = "Bootstrap”) is performed, which takes a ciphertext with
large random error (noise) and outputs a new ciphertext of the
same message with a fixed amount of noise, or the key-swichting
procedure (flag € {Relinearize, ModSwitch}) is applied, which takes
a ciphertext under one key and outputs a ciphertext of the same
message under a different key"[4]. In Table 1 a short overview
of the keys and procedures of normal encryption compared to
homomorphic encryption is given.

Note that this representation is greatly simplified. There are a
few more procedures defined in the "Homomorphic Encryption
Standard" [4] and the plaintext space, the ciphertext space and
the output space of the Eval function can differ. Here we omit the
difference between the ciphertext space and the output space of
the Eval function for simplicity, and because the evaluation of the
identity function can transform a ciphertext into the output of the
Eval function. An extensive discussion about the formal definition
of homomorphic encryption schemes and their properties is given
in the paper of Armknecht et al. [6].

2.1 Attributes

For each FHE scheme the basic properties of correctness, compact-
ness and circuit privacy should hold [6]. To have a closer look at
this properties we first have to define the term C-homomorphic
encryption scheme.

Definition 2.2 (C-Homomorphic Encryption Scheme). A HE scheme
is called C-homomorphic encryption scheme if it is an efficient, se-
cure homomorphic encryption scheme over each function in C.

Secure means in this context IND-CPA secure (see Definition
2.9). Efficiency guarantees that the KeyGen, Enc and Dec procedure
of the scheme run in polynomial time in relation to the security
parameter A (and is not dependant on the function that is evaluated
on the ciphertext) [4]. It is important to note, however, that this
is a theoretical requirement and, in practical terms, may permit
runtimes that are exceedingly impractical.
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Table 2: Circuit Privacy vs. Function Privacy

Privacy Distributions of ...are the same

Circuit  Eval output of f
Function Eval output of f;

fresh ciphertexts
Eval output of f;

The functions in C are also called circuits® and some authors
also use the term C-evaluation scheme instead of C-homomorphic
encryption scheme.

Definition 2.3 (Correctness). A C-homomorphic encryption scheme
is correct, if it can decrypt the encryption of a message without
any error and if for all functions f € C, it can correctly decrypt
the results of the evaluation of f over fresh ciphertexts with over-
whelming probability 3 [6].

Note: For intuitive purposes, the definitions of Homomorphic En-
cryption and, by extension, a C-Homomorphic Encryption scheme,
presume their correctness. Formally, a Homomorphic Encryption
scheme and a C-Homomorphic Encryption scheme may not neces-
sarily fulfill this criterion of correctness and are just defined as a
tuple of probabilistic polynomial-time algorithms
(KeyGen, Enc, Eval, Dec), where the Eval procedure just returns a
ciphertext ¢’. We posit that a homomorphic encryption scheme, if
deemed incorrect, cannot be considered homomorphic by its very
nature. Thus, we have intuitively assumed its correctness in our
definitions. See Figure 1 for a formal correct overview. Also note
that we always assume fresh ciphertexts here. See subsection 2.2
for further explanations to the i-hop properties of homomorphic
encryption schemes.

Definition 2.4 (Compactness). Given the security parameter A, a
C-homomorphic encryption scheme is compact if there is a poly-
nomial p, such that for all possible keys, all f € C and all possible
ciphertexts the size of the output of the Eval function is not big-
ger than p(A) bits, independent of the complexity of the evaluated
function f [6].

That means ciphertext growth is only dependant on the security
parameter.

Definition 2.5 (Circuit Privacy). A C-homomorphic encryption
scheme is (perfectly, statistically or computationally) circuit pri-
vate if for any keys, any function f € C, any fresh ciphertexts ¢
with Enc(m) = ¢ the distribution of the evaluation of f over the
ciphertexts is the same as the distribution of the encryption of the
evaluated plaintexts under the function f.# In formulas this implies
that the distributions D1 = Eval(EK, f, ¢) and Dy = Enc(PK, f(m))
should be (perfectly, statistically or computationally) indistinguish-
able [6].

Because f(m) is just another plaintext, circuit privacy implies
that an attacker can not distinguish between a fresh ciphertext

20ften the term circuit is used instead of function because the addition and multiplica-
tion are performed bitwise, meaning addition is equivalent to XOR and multiplication
is equivalent to AND. This means every function is represented by a boolean circuit.
3testtest

4Circuit private is sometimes also called "strongly homomorphic".
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Figure 1: Properties are rectangles with rounded corners,
classes are rectangles with gray background color. A dotted
arrow indicates, that the property holds for a class and a
thick arrow indicates that a class evolves from another. The
i-hop classification of the schemes is orthogonal to the other
classification. The figure is inspired by Armknecht et al. [6].

and the output of the evaluation procedure. Function privacy is a
weaker requirement than circuit privacy, where only the indistin-
guishability between the output distributions of different evaluation
functions on ciphertexts is demanded. Function privacy is some-
times also called evaluation privacy and implies that no information
about f beyond the outputs for the queried inputs is revealed. An
overview of the comparison between circuit and function privacy
is given in Table 2. "Note that for a scheme to be circuit or function
private, the property has to hold even against an adversary that
knows the secret key and can decrypt any ciphertext." [22]

2.2 Classification

Now after the basic properties of homomorphic encryption schemes
have been discussed, the different types of homomorphic encryption
schemes can be defined. In general, HE schemes can be structurally
divided into various types and historically categorized in different
generations.

In practice (informally) there are three structurally different types
of HE, namely partially, somewhat/levelled and fully homomorphic
encryption. Partially Homomorphic Encryption (PHE) is limited to
just one type of operation, either addition or multiplication. Most of
the known PHE schemes support any number of operations (either



addition or multiplication). "Somewhat Homomorphic Encryption
(SHE) supports mathematical operations with respect to adition
and multiplication, but is limited to a certain number of operations
(since each operation adds noise and after a certain amount of
noise is added, it is no longer possible to retrieve the data)." [25]
Finally, FHE supports both addition and multiplication, applied any
number of times to the data, therefore allowing the evaluation of
any function.

Since homomorphic encryption has not yet been standardized
and the distinction between SHE and LHE is more theoretical in
nature, they are sometimes used synonymously. In a formal cor-
rect way, however, there is a difference between these two types of
schemes and the additional distinction between the set of homomor-
phically evaluable functions/ circuits C and the ability to perform a
homomorphic operation on the output of the Eval function have to
be made. For extensive formal definitions of the various types of
homomorphic encryption, please refer to the paper by Armknecht
et al. [6].

Here only a brief overview of the formally correct definitions
is given. Given the formal definition, SHE and LHE schemes are
not constrained to support addition and multiplication but just an
arbitrary set of functions C. This means they can also be partially
homomorphic in the informal sense.

Definition 2.6 (Somewhat Homomorphic Encryption (SHE)). A SHE
scheme is defined as a correct C-homomorphic encryption scheme
that does not necessarily have to be compact.

Definition 2.7 (Levelled Homomorphic Encryption (LHE)). A LHE
scheme is a correct, compact C-homomorphic encryption scheme
that allows only functions of a certain depth  d given by an auxil-
iary input. Additionally, the length of the evaluation output must
not depend on d.°

The difference between those two types of schemes is that SHE
schemes do not have to be compact, so evaluating functions of a
higher depth can also increase the output length of the evaluation
function. LHE schemes on the other hand are compact and the
depth of functions that can be evaluated is a parameter on which
the length of the evaluation output does not depend.

Definition 2.8 (Fully Homomorphic Encryption (FHE)). A FHE
scheme is defined as a compact, correct C-homomorphic encryption
scheme where C is the set of all circuits.

This means FHE are turing complete, allowing to evaluate any
function on ciphertexts homomorphically.

The informal definitions could suggest that HE schemes allow
to perform a homomorphic operation on the output of the Eval
function. In the formal definition however the schemes have to be
correct, so the evaluation on fresh ciphertexts is guaranteed to work
but not on the output of a different evaluation. To show that a HE
scheme allows for the evaluation of functions on the output of the
Eval function, the concept of i-hop correctness is needed. Informal

The depth of a function or circuit is defined as the maximum number operations
applied to the input. In practice, the depth is often just the number of multiplications
and/ or additions applied to the input.

©"If we require that C is the set of all binary circuits with depth at most d, the scheme
is called levelled fully homomorphic." [6]
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i-hop correctness essentially means that a HE scheme is capable of
processing the output of the Eval function i times.

Note: Evaluating an arbitrary function is not equal to consecu-
tively evaluating arbitrary many functions. Consider

fC..(f(m))) := Fn(m).

Fp(m) is an arbitrary function on the plaintext m, so FHE can per-
form Eval(EK, Fy). But FHE does not necessarily allow to perform
Eval (EK, f (... (Eval(EK, f)))) because Eval(EK, f) could map the
plaintext m to a different message space, so the application of
Eval(EK, f) again is not valid anymore. The property of i-hop cor-
rectness is particularly important in scenarios where different en-
tities work together on processed data of someone else without
having a fresh encryption. In practice, FHE schemes are always
1-hop correct after the bootstrapping procedure.

An overview of the formal definitions of HE schemes is given in
Figure 1. For further information refer to Armknecht et al. [6].

Note: Numerous PHE schemes are known today, including RSA
(1978, multiplicative), El-Gamal (1985, multiplicative), Goldwasser
and Micali (1982, additive), and Benaloh (1994, additive) [1]. These
schemes offer faster computation compared to FHE schemes. How-
ever, their support for only one type of operation limits their applica-
tion to basic statistical calculations like counting, mean, or standard
deviation in a secure manner. The aforementioned schemes rely
on the factorization problem, the discrete logarithm problem, or
a residue problem. This reliance makes them vulnerable or poten-
tially vulnerable to attacks by quantum computers. Consequently,
this paper will not explore PHE schemes further. For additional
information on PHE schemes, please refer to the paper by ACAR et
al. [1] and the book by Kog et al. [19]. An overview of existing PHE
schemes, their supported operation, and additional information is
given in the appendix in Table 11.

2.3 History

Here we only give a short overview of the history of FHE that
can be divided into four generations [22]. In general, all known
FHE schemes today add some noise during the encryption process
that increases with each homomorphic operation until a certain
threshold is reached and the ciphertext is not decryptable any
more. To reduce the noise growth and the absolute noise of an
evaluation output different techniques have been proposed. The
FHE generations differ initially in their underlying mathematical
problems and later in the techniques used to limit noise growth
and refresh ciphertexts. A timeline showing the most important
schemes of each generation is shown in Figure 2.

The first FHE scheme was proposed by Craig Gentry in 2009
[14]. It is based on ideal lattices and introduced the bootstrapping
procedure to evaluate functions of any depth on ciphertexts. Al-
though the scheme supports batching. It is very slow in practice
due to the fast noise growth. Additionally, it is hard to implement
and vulnerable against key recovery attacks. The DGHV scheme is
another scheme of the first generation. It was proposed by Dijk et

"Note: This is a greatly simplified historical overview. Some authors may use slightly
different dates, as they consider other papers to be the introduction of the encryption
schemes, or because they make a finer distinction between different schemes.
8CKKS has a fast amortized bootstrapping procedure.
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Table 3: Comparison of FHE generations

2nd Generation

3rd Generation 4th Generation

HEME.
5S¢ S BGV BFV TFHE CKKS
Integer Arithmetic Bitwise operations ~ Real Number Arithmetic
scalar multiplication . . °
FAST OPERATIONS arithmetic .
non-arithmetic o
fast bootstrapping o . 8
PROPERTIES fast packing/ batching/ SIMD .
levelled design .
PROS fast scalar multiplication number comparison polynomial approx.
linear functions - multiplicative inverse
efficient - boolean circuits DFT, logistic regression
CONS slow non-linear functions - slow non-linear functions
USAGE large arrays of numbers bitwise operations  real numbers arithmetic
primarily due to the necessity for significantly increased parameters
2 Y o o ° g v o for securing such schemes against recent attacks. This increase in
) g § £ § 9 é E) parameters has led to NTRU-based schemes becoming much less ef-
Q Q Q .
2 2 3 E A ‘é i : i ficient compared to their counterparts, resulting in their diminished
% 5 é E : % = E ¥ use and lack of support by any existing library [22].
ol Al | - R L O‘ The third generation started in 2013 with the introduction of
2009 2010 2011 2012 2013 2014 2015 2016 2017 the GSW scheme and includes the GSW (2013) [15], the FHEW
(2015) [12] and TFHE (2016) [10] scheme. These schemes have a
Figure 2: Timeline of the main FHE schemes. different noise growth pattern compared to the schemes of the sec-
m Schemes based on ideal lattices, m Schemes based on AGCD, ond generation and are, according to Shai Halevi, less efficient but

m Schemes based on LWE and RLWE 7

al. [26] in 2010 and is based on the Approximate - Greatest Com-
mon Divisor (AGCD) problem. It suffers from big public keys and
high computational complexity. To reduce the public key sizes the
modulo switching technique was introduced. Both schemes of the
first generation are not relevant today because their noise growth
negatively affects efficiency and security.

Nearly all the schemes following the first generation are based on
Learining with Error (LWE) or Ring Learining with Error (RLWE)
(with some exceptions based on NTRU that are not discussed here)
which leads to better-understood security assumptions. The most
important schemes of the second generation are BGV (2012) [8]
and BFV (2012) [13]. "The Brakerski-Gentry-Vaikuntanathan (BGV)
and Brakerski/ Fan-Vercauteren (BFV) schemes are the two main
HE schemes to perform exact computations over finite fields and
integers." [18] With this generation, the techniques relinearization
and modulus switching were introduced. BGV and BFV allow better
noise control, higher efficiency, a better plaintext to ciphertext ra-
tio (named packing, which allows single instruction multiple data
(SIMD) instructions) and optimizations on the bootstrapping pro-
cedure [16]. Scale invariant is one technique of this generation, to
reduce the noise growth in a variant of the BGV scheme from expo-
nential to linear, which eliminates the need for modulus switching.
NTRU-based encryption schemes are not discussed in this paper

therefore need weaker hardness assumptions [16]. With GSW the
approximate eigenvector method was introduced, which eliminates
the need for key and modulus switching techniques by reducing
the error growth of homomorphic multiplications. With TFHE, the
bootstrapping procedure and a function evaluation became possible
in one step which is known as programmable bootstrapping.

The fourth generation of FHE starts in 2017 with the CKKS
encryption scheme [9]. In general, CKKS is similar to the schemes of
the second generation but it uses approximate computation, which
is considerably faster and it allows floating-point arithmetic (by
homomorphically operating over approximations of real numbers),
which is necessary for most machine learning algorithms.

In general, schemes of the first generation are not relevant today.
Schemes of the second generation are good at performing exact com-
putations over integers on large arrays of numbers simultaneously
because the schemes allow SIMD operations, but they are not good
for depth functions where bootstrapping is required. Third gener-
ation schemes, namely TFHE, can outperform previous schemes
for bitwise operations but it does not support batching, hence the
scheme can be outperformed when large amounts of data should be
processed simultaneously. This allows CKKS to have a faster amor-
tized bootstrapping procedure than TFHE, although TFHE has the
fastest bootstrapping procedure. In general, "the fourth generation,
i.e. CKKS, is the best option for real numbers arithmetic." [22] A
final comparison of the FHE generations can be found in Table 3.
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Figure 3: Illustration of the bootstrapping technique by Mar-
colla et al. [6]

In the left column, a normal encryption and decryption is
shown. In the right column, the bootstrapping recryption
procedure is illustrated.

Through the Chimera framework [7], switching between different
encryption schemes such as TFHE, BFV, and CKKS is possible, al-
lowing the benefits of all schemes to be leveraged. For an extensive
overview of the most important schemes, their optimizations and
relations, please refer to the paper by Marcolla et al. [22].

2.4 From SHE to FHE

Generally, all contemporary FHE schemes introduce a certain de-
gree of noise during the encryption process. This noise accumu-
lates progressively with each homomorphic operation, eventually
reaching a critical threshold beyond which the ciphertext becomes
undecipherable. This inherent characteristic constrains the depth
of functions that can be evaluated. To surmount this limitation
and attain a true FHE scheme, a refresh procedure is required to
update the evaluation output, simplifying it for continued opera-
tions. According to the "Homomorphic Encryption Standard" [4] the
Refresh procedure follows one of three known techniques namely
"bootstrapping”, "re-linearization" or "modulus switching".

Bootstrapping is a "recryption which works by encrypting a ci-
phertext anew (so that it becomes doubly encrypted) and then
removing the inner encryption by homomorphically evaluating
the doubly encrypted plaintext and the encrypted decryption key
using the decryption circuit” [6]° This technique only works, if the
evaluation algorithm can perform the decryption plus one func-
tional complete gate (e.g. NAND). The basic idea of bootstrapping
is shown in Figure 3. The bootstrapping procedure takes a cipher-
text with a large noise and outputs a new ciphertext of the same
message with a smaller fixed amount of noise.

Note: Bootstrapping creates a large computational overhead be-
cause every ciphertext has to be recrypted.

In Gentry’s first scheme an additional technique named squash-
ing was introduced to reduce the complexity of the decryption
circuit before bootstrapping. This technique was not adopted by
later schemes and is therefore not discussed here.

9The encryption of the decryption key can be done by its own public key or another
key. See subsection 2.5 for further information.
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Depending on the scheme, the output size of the evaluation is
bigger than the size of fresh ciphertexts. With re-linearization, also
called key-switching, the ciphertext size is reduced back to normal.
Dimension-modulus reduction, also called modulus switching is a
technique to convert a ciphertext ¢ mod q to ¢/ mod p where p is
sufficiently smaller than q.

In general, these techniques allow the transformation from a
SHE scheme to a FHE scheme by updating the evaluation output.
This theoretically allows a FHE scheme to evaluate any function on
ciphertexts. In practice, it is beneficial to sidestep these resource-
intensive techniques by limiting the depths of the functions to be
evaluated on ciphertexts.

2.5 Security

This section provides a general overview of security notions in the
context of FHE. No encryption scheme-specific security analysis is
performed. This means that no overview of the underlying prob-
lems of LWE/ RLWE, their attacks, or recommended parameters is
given. For further information on lattice based problems refer to
the paper of Marcolla et al. [22]. More information on attacks on
lattice-based problems, their runtime, and the resulting parameter
recommendations can be found in the "Homomorphic Encryption
Standard" [4] and the Estimator tool of Albrecht et al. [5].

A HE scheme is secure, if it is semantically secure (IND-CPA
secure). Indistinguishability under chosen plaintext attack (IND-
CPA) secure means that although an attacker is allowed to ask an
oracle a polynomial number of times for the encryption of arbitrary
plaintexts (but he can not ask for the decryption of a ciphertext),
he can not distinguish between the encryption of 0 and 1 with
non-negligible probability.'?

IND-CPA security is formally defined as follows [22].

Definition 2.9 (IND-CPA Security). Let

& = (KeyGen, Enc, Dec, Eval) be a HE scheme, and m;, a message
with {0, 1} as the message space. Let us define an adversary A that
knows the evaluation key EK and the public key PK and is given
an encryption Encpg (m) for m € {0, 1}. A can make queries to the
encryption oracle. After a polynomial number of queries, A tries
to guess whether m = 0 or m = 1. Then, the scheme is IND-CPA
secure if for an efficient adversary A, it holds that:

Pr [A (PK,EK, Encpg (0)) = 1] —
Pr [A (PK,EK, Encpk (1)) = 1] = negl(A)
where (SK, PK, EK) « KeyGen(A).

THEOREM 2.10. IND-CPA security is only achievable if the encryp-
tion scheme randomizes ciphertexts.

Proor. If there is no randomization, an attacker could simply
ask for the encryption of a message and compare the encrypted
output with the given ciphertext. In the definition above the mes-
sage space was restricted to {0, 1}, so the attacker just has to ask
the orcale for the encryption of 0 and 1 and can then compare the
ciphertexts to determine which message was encrypted. !! O

1Note: The Enc — and Dec — procedure, the public key PK and the Eval key EK are
public. Only the secret key SK is secret.

11Some PHE schemes are not randomized, so they should not be used for homomorphic
encryption (e.g. RSA).
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According to Acar et al. [1] some SHE schemes have been proven
to be indistinguishability under (non-adaptive) chosen ciphertext
attack (IND-CCA1) secure, but no unbounded FHE scheme is yet
proven to offer this type of security.

THEOREM 2.11. By their design, HE schemes can not achieve indis-
tinguishability under adaptive chosen ciphertext attack (IND-CCA2)
security.

Proor. IND-CCAZ2 security means, given a ciphertext c, an at-
tacker is allowed to ask an oracle for the decryption of any cipher-
text ¢’ # c.

Given the ciphertext ¢ = Enc(m) the attacker encrypts a message
m’ (Enc(m’) := ¢’) and adds it to ¢, resulting in¢ = ¢ & ¢’. Now
the attacker asks the oracle for the decryption of of ¢ # c. Since the
encryption scheme is homomorphic, the following applies:

Dec(¢) = Dec(c @ ¢’) = Dec(c) + Dec(c’) = Dec(c) + m’.

Because m’ and Dec(¢) are known, the attacker can determine
the value of the original message m, which means the encryption
scheme can not be IND-CCA2 secure. O

The lack of IND-CCA2 security has to be considered in the design
of FHE protocols, especially when they handle some ciphertext in
a special way. Consider the following example.

Example 2.12. An encryption scheme only allows the decryption
of messages > 0. Otherwise, the decryption algorithm returns
"FAIL". While watching the behavior of the decryption algorithm a
malicious server sends the false evaluation result

c®Enc(-t),t=1,...,n,

until the decryption fails the first time. '? Since the encryption
scheme is homomorphic and the decryption fails when 0 was en-
crypted, it follows:

0 = Dec(c @ Enc(—t)) = Dec(c) + Dec(Enc(—t)) = Dec(c) — t.
The attacker then knows that the original message was t.

The example demonstrates that when applying homomorphic
encryption methods, it is crucial that an attacker cannot decrypt a
certain class of ciphertexts (for instance by observing the behavior
of the client during decryption) since they could be adaptively cho-
sen by homomorphically changing given ciphertexts. This problem
is nonexistent for non-homomorphic encryption schemes because
in general

Dec(c) + Dec(Enc(m)) # Dec(c @ Enc(t)) = nonsense

holds, which allows no information retrieval. Countering such at-
tacks is beyond HE and can be solved on the security protocol level
(c.f. sloppy Alice attack on the McEliece encryption scheme and its
counterattacks). A robust protocol could for example transmit the
same data in a newly encrypted form instead of answering "FAIL"
after the decryption of a function evaluation result on the send data
failed. Due to the variance in the added noise with each encryption,
the attacker remains unaware that the newly transmitted data is

121f the decryption fails the first time ¢ = —1,...,—n has to be tested until the
decryption does not fail any more.

identical to the previously sent data. This method effectively miti-
gates the demonstrated attack, rendering it non-threatening in this
context.

Note: Knowing arbitrary pairs (m, ¢ = Enc(m)) does not allow
for the demonstrated type of attack because FHE schemes offer
IND-CPA security. For the demonstrated attack an attacker has to
be able to decrypt an adaptively chosen ciphertext. Comparing the
encryption Enc(m + m’) to a given ciphertext ¢ or comparing ¢
with ¢ @ Enc(m’) for different m’ is not feasible because different
random noise is added.

The previous considerations focused on HE in general. For FHE
an additional security assumption, namely Circular Security is
needed.

Definition 2.13 (Circular Security [22]). An encryption scheme
that is secure against adversaries who observe an encryption of the
scheme’s secret key under its public key is called circular secure.

All today-known FHE constructions rely on bootstrapping, which
is only possible if an encryption of the secret key under its own pub-
lic key is published. "This implies that IND-CPA security has to hold
under circular security. Most FHE schemes are not proven IND-CPA
secure under circular security, and it is in general adopted as an
additional assumption on top of the scheme’s underlying security
assumptions.” [22]

If the circular security assumption does not hold, it is also possi-
ble to use a chain of private/ public keys (SK;,PK;), i = 1,...,nand
publish only the encryption of a secret key under the next public key.
This means Enc(SKj;, PKj11) is published instead of Enc(SKy, PKj).
Note, that the resulting scheme is limited in depth by the number of
key pairs. This is in practice no constraint ! and eliminates the cir-
cular security assumption. However a weaker security assumption,
called KDM security, is needed.

Definition 2.14 (Key Dependent Message (KDM) [21]). An encryp-
tion scheme is Key Dependent Message (KDM) secure if it is secure
even against an attacker who has access to encryptions of messages
which depend on the secret key.

The difference between KDM and circular security in the context
of bootstrapping is that the first only publishes an encryption of
the secret key while the latter publishes an encryption of the secret
key under its own public key. Thus, the KDM security assumption
contains less potential structure for attacking the encryption of the
secret key.

For further information on KDM security and its proof, we refer
to the paper by Malkin et al. [21]. To eliminate also this assumption
in some LHE schemes modulus switching can be used to reduce the
noise. For optimizations bootstrapping is still often recommended,
adding the KDM security assumption again.

The security concepts discussed before guarantee the confiden-
tiality of the data but they do not prevent an attacker from delivering
wrong evaluation results. Consider a client who wants to securely
outsource the computation of a function f on encrypted data ¢
to the cloud. Instead of Eval(f,c) the malicious cloud provider

131f the Evaluation is performed by a server and the max depth is reached, this could
be communicated to the client, who then sends new key pairs. This eliminates the
depth constraint in practice.



returns Eval(g, c¢) for some function g # f. This means an active at-
tacker could return false evaluation results of potentially significant
consequences. The intention behind such an attack might not nec-
essarily be to harm the client, but could be motivated by the cloud
provider’s desire to conserve their own resources by evaluating a
simpler function g instead of f.

To overcome this threat multiple techniques can be used.

1. The easiest way would be to include data with known evalua-
tion results. This means that the client has to perform the computa-
tion on its side and compare it to the results by the cloud provider.
The higher the percentage of pre-computed evaluations that are
compared, the higher the security.

2. Another way is to run statistical tests on the returned outputs
and look for significant changes that could trigger the need for
the first technique. This could be additionally supported by a live
benchmark of the server to ensure a function of similar complexity
as the given one was evaluated. This would eliminate the incentive
to save resources.

3. Hardware techniques like Trusted Execution Environments
could also be used to ensure the right function was evaluated on
the data. This technique however needs specialized hardware that
is likely to increase the cost of outsourcing FHE computations. In
research, the focus therefore lies on mathematical-based solutions
that can run on every hardware.

Another way could be the use of homomorphic hashes or sig-
natures. The idea is that the client publishes the ciphertext c, the
function f that should be evaluated and a homomorphic hash func-
tion h. The cloud evaluates the function on the encrypted data and
returns cres = f(c). The client can then check if the evaluation was
performed as expected by calculating h(cres) = h(f(c)) and check
if it matches f(h(c)). This technique is relatively new and adds an
additional computational overhead, so it is not discussed in this
paper.

Note that the discussed threat of unwanted transformations of
ciphertexts (to other valid ciphertext) is also known as the mal-
leability property.} 1t is also present during the transportation of
data to a third party (e.g. cloud provider). An attacker could for
example alter the content of "Send 100$ to bank account 1234" to
"Send 100$ to bank account 5678" by homomorphic addition. To
mitigate this attack during transportation, the FHE encrypted data
¢ must be send with an additional normal signature

sig(c) = Encnormal (h((,‘), kpriv) .

In this context, h denotes a normal (non-homomorphic) hash func-
tion and kprjy a normal private key of the client (not the already used
one private key SK of the homomorphic encryption). The server
can check the authenticity and integrity of the data by checking
the signature. The final send message is then

(¢,sig(c)) = (Encpye (m, PK), sig(c)) .
Instead of just sending the FHE encrypted message with its sig-
nature, the homomorphic ciphertext can be sent by using a nor-
mal encrypted transportation protocol that offers authenticity and
integrity of the data. The advantage of this technique is that an
existing secure and standardized solutions can be used. A small

4Non homomorphic encryption schemes are often non malleable. (See explanation
below Theorem 2.12)

F.P. Paul

Traditional Setting FHE Setting
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J Enc(my * my) J c1 *xc

Dec(Enc(my + my)) = my * my Dec(cy % ¢3) = my * my
Figure 4: Usage of FHE in the public cloud: In the traditional
setting on the left the ciphertexts have to be decrypted for
computations in the cloud, thereby posing a risk of data
breaches. This risk is not present in the FHE setting on the
right because calculations can be directly performed on en-
crypted data without the need of decryption.

In the graphic, m; represents the plaintext, Enc and Dec de-
note the encryption and decryption function, * stands for
any operation on plaintexts and x for the according opera-
tion on ciphertexts.

drawback is that the send message is slightly bigger because an-
other layer of encryption is added. Let k,yp, be the normal public
key of the server and PK the FHE public key of the client. In for-
mulaic terms, an additional encapsulation with standard transport
encryption means that

(Encnormal (C, kpub) ,8ig (C) )

= (Encnormal (Encgyg (m, PK), kpub)’ 3i9<c))

is transmitted.

In our previous analysis, we observed that HE entails negative
implications for security due to its inherent homomorphy. How-
ever, it is noteworthy that HE enhances security in outsourced
computations. This enhancement stems from the capability of FHE
to facilitate encryption during processing, extending beyond the
traditional confines of encryption at rest and in transit, as offered
by conventional encryption methodologies. Consequently, this en-
ables the secure offloading of computations to the cloud, obviating
the need to decrypt the data intermittently. Figure 4 shows the
advantage of FHE over traditional encryption.

An additional feature of modern FHE schemes like BGV [8], BFV
[13], FHEW [12], TFHE [10] and CKXKS [9] is that they are consid-
ered to be quantum-safe because they are based on LWE or RLWE.
For the entire encryption scheme to be quantum-safe, quantum se-
curity must also apply to the circular security assumption. But since
the scheme is assumed semantically secure (also in the context of
quantum computers), an adversary can not distinguish the encryp-
tion of the secret key from the encryption of an arbitrary plaintext,
so the circular security assumption should also be quantum safe.

Additionally HE schemes can offer circuit or function privacy
(Definition 2.5). According to Shai Halevi [16] many FHE schemes
can also offer great leakage resilience!® due to their underlying
problems, namely LWE and RLWE.

An additional security feature of all sufficient HE schemes is that
they allow key evolution [4].

5Leakage resilience means resilience against side-channel attacks.
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Definition 2.15 (Key Evolution). Key evolution allows a client to
replace a compromised secret key SK by a new secret key SK’, so
that semantic security still holds even for an adversary who holds
SK. The transformed ciphertexts can be decrypted only by the client
using SK’.

The idea behind key evolution is the same as in bootstrapping.
The difference is only that the old secret key SK has to be encrypted
under a new public key PK’ and not its own. With key evolution,
compromised keys can be exchanged without decrypting the data.!®
Key evolution thus facilitates the long-term storage of sensitive
data in the cloud under regularly renewed keys. This approach fur-
ther minimizes the risks associated with brute force attacks on the
keys. For further information we recommend the "Homomorphic
Encryption Standard" [4].

In general, there is always a tradeoff between security and run-
time. In FHE, this tradeoff requires even more careful consideration,
as poor parameter selection can either compromise the encryp-
tion’s security or necessitate the extremely computation-intensive
process of bootstrapping. Practically, this means that in contrast to
conventional encryption methods, the security parameter should
not be chosen liberally but as small as is securely feasible. A very
useful and well-established resource for security-parameter selec-
tion is provided by the lattice-estimator tool, as referenced in [5].

The security analysis conducted was not specific to any particu-
lar encryption scheme and is applicable to HE in general. However,
since CKKS is the method of choice in the use case specified later,
we would like to make a note here regarding a procedure-specific
impact on security. Li and Micciancio [20] revealed a vulnerability
in the CKKS encryption scheme and its variants, where an adver-
sary with encryption access could potentially extract the secret key
through linear algebra or lattice reduction methods, especially if
they have knowledge of both the decrypted elements and corre-
sponding ciphertexts. To counteract this, they recommend against
sharing the results of decrypted messages. However, for scenarios
like secure multi-party computation where sharing plaintexts is
essential, they propose a workaround: introducing an error at the
decryption’s result to prevent such attacks.

2.6 Limitations of FHE

The principle underlying Fully Homomorphic Encryption (FHE)
renders it an ideal cryptographic solution for outsourcing compu-
tations to the cloud while maintaining data confidentiality. This
raises the question as to why the technology has not yet become
widespread in practical applications. There are three main reasons
for this: firstly, the significant computational and storage overhead
[6]; secondly, the lack of standardization; and lastly, the still com-
plicated way to use FHE implementations [22].

1. Today’s homomorphic encryption schemes are based on prob-
abilistic algorithms to guarantee IND-CPA security by introducing
an error termed noise into the encoded plaintext. With each ho-
momorphic operation, the noise growths, thereby restricting the
feasible number of operations on ciphertexts before decryption
fails. To facilitate an indefinite number of operations on ciphertexts,
resource-intensive techniques such as bootstrapping, squashing,

161t is important to guarantee the authenticity of the data owner to prevent the adver-
sary from exchanging the keys.

Table 4: Running times of multiplying 2 bits homomorphi-
cally and the expected running time in 2024 according to
Duality [11]

Year runtime speedup speedup per year

2009 30 min - -
2014 2000ns  9-108 18 - 107
2020 100 ns 20 3.33
...Hardware Acceleration ...
2024 0.1 ns 1000 250

modulus switching, or relinearization are essential. However, the in-
herent increase in noise is the basis of the security of these schemes
but it also poses significant challenges in developing practical FHE
schemes. Those resource-intensive techniques can be avoided by
only evaluating low-depth functions on the encrypted data. Never-
theless, FHE remains highly computation-intensive and requires
very large keys. A general comparison with plaintext computa-
tions is not presented here, as the runtimes can vary significantly
depending on the scenario. The resource consumption (both in
terms of runtime and memory) of FHE is heavily dependent on sev-
eral factors: the specific HE method employed, the chosen security
parameter, the particular implementation, the function being eval-
uated, and the encoding technique of the plaintext. In the master’s
thesis building upon this seminar paper, a comparison is conducted
within a specific scenario, as detailed in section 5. In the future, as
has been the case in the past, significant improvements in runtime
and storage are expected. This will be achieved on two fronts: firstly,
at the hardware level through the utilization of specialized hard-
ware such as FPGAs, and secondly, at the software level through the
implementation of more efficient packing techniques. Table 4 shows
the historical improvements in the runtime of FHE multiplication
to give a hint on possible future improvements.

Another limitation of FHE is that its output is always encrypted
and can only be decrypted with knowledge of the secret key.!”
This characteristic implies that the result of branching conditions is
also encrypted, thereby making it impossible to process with unen-
crypted processors. Consequently, the data-independent execution
inherent in FHE extends to branching (as well as to the termination
conditions of loops), necessitating the evaluation of all branches.
The correct branch can only be selected at the end of this process. A
potential solution involves decrypting branching conditions on the
client side [25]. However, this requires constant communication
with the client and can significantly compromise security [25].

Another limitation of FHE, already mentioned in subsection 2.5,
is that it does not guarantee integrity, meaning the client can not
be sure that the right function has been evaluated on the encrypted
data on the server side [16]. Additionally, it has to be mentioned
that HE does not allow to keep the evaluated functions secret.
As mentioned in Theorem 2.5 HE only offers that no information
about the evaluated function can be retrieved from the output of
the Eval procedure. But if a client sends for example an encrypted

This is in contrast to obfuscation and functional encryption. See subsection 2.7 for
further information.



neuronal network and encrypted data to the cloud, only the weights
of the network are encrypted. Its structure is fully disclosed to
the server. Hiding the algorithm applied to the data is subject to
obfuscation research [6]. See subsection 2.7 for further information.
If the algorithm and the data are owned by different entities both
the data and the algorithm can be kept secret. The hiding of the
algorithm however results from the fact that the algorithm never
leaves the secure environment of the algorithm owner (see Use
Case 2). So secret function evaluation is not achieved by HE.

Some authors cite the requirement to encrypt all data under a
single key as a limitation [16]. However, as this is also a characteris-
tic of traditional encryption methods, we contend that this does not
constitute a significant restriction in our view. Additionally, there
are already methodologies supporting what is known as multi-key
FHE (see Use Case 6).

2. First standardization efforts were initiated in 2017 by the con-
sortium "HomomorphicEncryption.org,' comprising industry, gov-
ernment, and academic researchers from entities such as IBM, Mi-
crosoft, Intel, the NIST, and others [4]. While the standardization
process has not reached completion, preparatory documents have
been issued by the ISO. These endeavors are anticipated to culmi-
nate in an established standard in the foreseeable future. However,
as of the present, the absence of a finalized standardization remains
a constraining factor, also limiting the trust in the technique. In
the future, the standardization of FHE could be its main advantage,
as FHE operates independently of data and can evaluate any func-
tion. This implies that any evaluation of private functions becomes
standardized once FHE is standardized. In combination with stable
open source libraries like OpenFHE this will likely increase the
trust and the adoption of FHE. While specific use cases may have,
and will continue to have much better privacy-preserving solutions,
these solutions must be standardized within their respective data-
or function-dependent scenarios.

3. To develop FHE applications at the moment, an extensive
understanding of HE is essential [22]. This encompasses various
aspects, including parameter selection, plaintext encoding, efficient
packing, and approximating high-level functions with the basic
FHE operations of addition and multiplication.!® This highly limits
the practical usability of FHE at the moment. Current developments
in HE compilers and other high-level tools aim to automate the
transformation of high-level programs, such as machine learning
models, into FHE-based implementations. Consequently, FHE is
becoming increasingly user-friendly, potentially enabling the fully
automated conversion of existing algorithms into their FHE equiv-
alents, thereby minimizing (or entirely eliminating) the need for
additional engineering.

Beyond the additional engineering efforts required for develop-
ing FHE-compatible algorithms, key management systems must
also be adapted, as FHE solutions necessitate the handling of evalu-
ation keys.

Note: Here no extensive analysis of function approximations
in such compilers is given. In general, FHE allows the evaluation
of a functional complete set of operations so the existence of an
arbritrary close approximation is given. In general functions like

181t must also be considered whether these approximations introduce any bias into
the computational results.
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Table 5: Main limitations of FHE and their solution

Limitation potential solution

computational overhead Hardware acceleration and
better packing techniques

lack of standardization =~ Homomorphic Encryption Standard [4] and

stable open source libraries

hard to use High level compilers like HElayers

[ functional encryption obfuscation }

o construct FHE

searchable symmetric encryption

structured encryption
interactive

Trusted Execution Environments (TEEs)
transciphering Multiparty Computation (MPC)
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Figure 5: Overview about technqiues related to FHE. FHE
stands as a key component in the realm of privacy-enhancing
technologies, currently being explored in a dedicated project
at the NIST.

comparison, min or max are most efficiently approximated using
circuits and encryption schemes of the third generation. ' In most
other cases a polynomial approximation is feasible.

In concluding this chapter on the limitations of FHE, we have
observed that the three primary current constraints of FHE are
being progressively mitigated or resolved, as shown in Table 5.
This advancement paves the way for an anticipated increase in the
adoption of FHE technologies.

2.7 Beyond Homomorphic Encryption

Besides FHE , there are two additional cryptographic concepts that
apply functions to data and are intertwined with FHE, namely
Functional Encryption (FE) and Obfuscation.

Definition 2.16 (Functional Encryption (FE)). Possessing a master
key MK and a function f, FE enables the derivation of a secret key
SK. "Given a ciphertext, the secret key allows the user to learn the
value of f applied to the plaintext and nothing else."[6]

191f the min or max is calculated it has to be kept in mind that the encryption is not
order-preserving.
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The difference between FHE and FE is that FE allows to control
which functions can be applied to the data (by the derived secret
key that depends on the function f) and a key can be used to get
the evaluation result unencrypted.?’ FHE on the other hand allows
anybody with the evaluation key to apply any function to the
encrypted data and the result is always encrypted. Only the owner
of the secret key can get the plaintext result. FE can be used to
construct FHE if the functions are applied to encrypted data.

Definition 2.17 (Obfuscation). "Obfuscation was originally de-
signed to be conceptually similar to black box computation, where
one gains knowledge of inputs to the black box, and outputs from
it, but nothing else." [6]

An obfuscated program incorporating both public and private
keys can be created to decrypt the input, apply the necessary func-
tion, and then re-encrypt the result. This means one could construct
a FHE scheme from obfuscation, but it is important to note that
the security implications of embedding secret keys in a published
program must be carefully evaluated.

Besides functional encryption and obfuscation, HE can be uti-
lized as a building block for generating zero-knowledge proofs,
allowing delegation of computation, or creating homomorphic sig-
natures [6]. Delegation of computation enables the verification of
whether an outsourced computation was correctly performed and
is closely related to homomorphic signatures, homomorphic hashes,
verifiable computation, homomorphic authenticated encryption and
homomorphic authentication. Additionally the bootstrapping pro-
cess in FHE schemes allows key evolution (refer to Theorem 2.15),
which can be applied to proxy re-encryption as well [22].

Instead of FHE searchable symmetric encryption or structured en-
cryption could be used for fast database lookups or data mining in
general. Hardware-based solutions like Trusted Execution Environ-
ments (TEE) could also serve as an alternative to, or in combination
with, HE.

TEEs could guarantee the evaluation of the right function or
they could be used to perform highly complex operations on in-
termediate evaluation results unencrypted. The security of such
hybrid solutions must be analyzed individually in each case. For
instance, a plaintext operation within a Trusted Execution Envi-
ronment should always be conducted on heavily processed and
aggregated data, which do not allow for inference about individual
data points.

FHE could also be used to support multi-party computations,
where multiple entities evaluate a function on all the input data
while keeping their individual inputs private from each other.?!
Multi-key FHE (MKFHE) offers a framework for developing multi-
party schemes, yet it necessitates the participation of all parties,
as the failure of any single party could compromise the entire
protocol. Threshold Multi-key FHE (TMKFHE) provides a more
robust solution by tolerating the failure of a limited subset of parties.
However, ensuring active security in such a setup requires the
incorporation of additional mechanisms, such as Zero-Knowledge

20"FE is similar in essence to identity-based encryption and attribute-based encryption."
[6]

2I'The usage of proxy re-encryption to encrypt the data of all entities under the same
new key is not sufficient for multi-party FHE, because it is not resilient to weak
collusion attacks between one entity and the proxy.

Table 6: Simplified comparison of FHE, MPC and TEE. MPC
has a large communication overhead, FHE is computational
expensive and TEEs are often proven to be vulnerable against
side-channel attacks.

FHE MPC TEE
no communication ) o .
no computational overhead o . .
no known attacks . . o

security based on LWE, RLWE protocols hardware

Proofs.?2 The exploration of Multi-party FHE extends beyond the
scope of this work. In the Homomorphic Encryption Standard [4]
TMKFHE is formalized on an abstract level as distributed HE. To
gain insight into the practical application of FHE within multi-
party use cases, as well as to access additional references, refer to
Figure 16 in "Survey on Fully Homomorphic Encryption, Theory,
and Applications" by Marcolla et al. [22]. Besides extending FHE
to multi-party scenarios, interactive FHE is also conceivable. In
interactive FHE, computationally intensive operations (such as
bootstrapping) are performed on plaintexts by the client and the
resulting encrypted data is sent to the server. While this approach
may seem to contradict the principle of outsourcing computation,
limiting it to a few operations with exceptionally high overhead
can be justifiable. An overview of the mentioned techniques and
their relation to FHE is given in Figure 5.

FHE, in conjunction with homomorphic signatures, hardware
solutions like trusted execution environments, and zero-knowledge
proofs for active security could stand at the forefront of crypto-
graphic solutions for secure cloud usage in a multi-party context.
Generally, the future will likely see the combination of various
cryptographic techniques with FHE as the optimal way to secure
the outsourcing of processing while ensuring the confidentiality of
data.

Note: MPC and TEEs are both seen as an alternative to FHE/
MKFHE. Each of these technologies offers distinct trade-offs be-
tween security, computational overhead, and communication over-
head. FHE provides strong data confidentiality with minimal com-
munication needs at the cost of high computational overhead. MPC
allows computation on data distributed among multiple parties
with strong security guarantees but requires significant communi-
cation. TEEs offer an efficient way to securely process data with
minimal communication overhead but depend on the security of the
hardware implementation and are susceptible to certain types of
attacks. A comparison of the three technologies is given in Table 6.
The choice between these technologies depends on the specific
requirements of the application, including the types of data being
processed, the computational resources available, and the threat
model considered. The robust security offered by FHE, combined
with its adaptability in multi-party scenarios without significant
communication overhead, positions it as a highly valuable technol-
ogy. Its applicability is further enhanced by the ability to offload

22passive security means parties follow the protocol and try to extract information.
Active security means parties are allowed to deviate from the protocol and send for
example wrong shares of information.



the substantial computational demands to potentially more cost-
effective, unregulated environments. This flexibility underscores
FHE’s potential in broadening the scope of secure computational
outsourcing.

3 FHE SCHEMES AND IMPLEMENTATIONS

Among the most widely used and implemented SHE schemes are
BGV, BFV, FHEW, TFHE, and CKKS.?*

The BGV, BFV, and GSW schemes are outlined in the Homomor-
phic Encryption Standard, with CKKS positioned as a prospective
addition. Selecting an appropriate scheme is complex, necessitat-
ing a nuanced understanding of various factors to optimize perfor-
mance across different architectures and use cases. A useful starting
point for this selection is Table 3 detailing typical characteristics of
the schemes of each generation, though it’s essential to recognize
that actual resource consumption will significantly depend on the
specific implementation.

Presently, a multitude of FHE library implementations exist,
some of which are highlighted in the Homomorphic Encryption
Standard [4] and the survey by Marcolla et al. [22]. These imple-
mentations broadly fall into two categories: libraries and compil-
ers/frameworks. FHE libraries primarily provide access to scheme
operations through an API, including fundamental functionalities
like KeyGen, Enc, Dec, and Eval, alongside additional features for
ciphertext management (e.g., noise growth control) and operations
such as homomorphic addition and multiplication. The onus of
correct API utilization rests on developers, necessitating a deep
understanding of each function within privacy-preserving applica-
tions.

Conversely, FHE compilers serve as high-level tools that abstract
the complexities of FHE library APIs, thereby enabling a broader
spectrum of developers to securely implement privacy-preserving
mechanisms. These compilers address prevalent engineering chal-
lenges in FHE application development, including parameter selec-
tion, plaintext encoding, data-independent execution, and cipher-
text maintenance. A practical alternative to software optimizations
are hardware accelerators that will likely expand the scope of feasi-
ble FHE applications.

Given the dynamic nature of implementations, an exhaustive
enumeration of libraries and their features is not provided here. Ap-
pendix A gives only a short overview of the most important encryp-
tion schemes (Table 8), libraries (Table 9), frameworks/compilers
(Table 10), and the entities behind their development. An empirical
comparison of libraries such as SEAL, Helib, HEAAN, FHEW, TFHE,
and Palisade is conducted in the FHEBench study by Jiang and Ju
[17], offering valuable insights for selecting suitable schemes and
implementations for performing specific operations. Notably, many
FHE libraries forego bootstrapping due to its prohibitive compu-
tational cost, limiting the number of feasible multiplications and
influencing the choice of implementation for particular use cases.

2The CKKS scheme, initially termed HEAAN, is now recognized by the research com-
munity by the acronym CKKS, which reflects the authors’ last names. The designation
HEAAN is now applied to the corresponding library [22].
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Table 7: Different types of adversaries

type of adversary ~ behavior

semi-honest/ follows protocol,
honest but curious record data and try to recover information

most powerful adversary,
allowed to deviate from the protocol,

malicious inject false data,
manipulate data,
record data and try to recover information,
return false Eval output
malicious adversary with penalties
covert

when deviating behavior is detected

4 POSSIBLE USE CASES

FHE allows for a variety of use cases. In general, there are three
main types of adversaries that have to be considered in a use-case
analysis: semi-honest, malicious and covert. See Table 7 for an
overview of adversary types.

Figure 6 presents a comprehensive overview of potential FHE
applications in general. The depicted scenarios presuppose a semi-
honest adversary model and utilize a non-interactive FHE approach.
Should the threat model extend to malicious or covert adversaries,
it necessitates the integration of supplementary techniques along-
side FHE to ensure robust security measures. The simplest use
case is the outsourcing of computation while guaranteeing data
confidentiality.

Usk CASE 1 (OuTsOURCING COMPUTATION). In this use case, the
data owner is also the model owner. Encrypted data, possibly alongside
an encrypted model, is sent to the cloud for evaluation. The cloud
processes the model on the encrypted data and returns the result, also
encrypted.

This setup ensures data encryption throughout the process (refer
to Theorem 2.9), facilitating computation outsourcing to a cost-
effective, unregulated environment. Examples include encrypted
data database queries or machine learning inference outsourcing,
where a pre-trained model?* is encrypted and stored in the cloud
for evaluation on encrypted inputs. The data and the model weights
are kept private, but the model structure is exposed.

Usk CasE 2 (OuTsoURCE DATA). In this use case, a data owner
transmits their encrypted data to the model owner, who then evaluates
the model homomorphically and returns the encrypted results to the
data owner.

This approach enables the assessment of external models on
personal data without compromising data confidentiality. A sig-
nificant benefit is the protection of the model and its structure
from exposure. This scenario is particularly appealing to companies

%4Typically, machine learning models are trained without encryption due to the signif-
icant computational overhead associated with FHE.
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developing Al models, potentially utilizing Al-specific hardware
available to the model owner.

UsE CasE 3 (OUTSOURCE MODEL). In this use case, a model owner
encrypts and sends their model to a data owner, enabling the model’s
evaluation on data not owned by the model owner.

This approach is particularly valuable when encrypted data can-
not be shared due to regulatory constraints, and it allows the provi-
sion of a trained model to customers without disclosing the model’s
weights, thus safeguarding training data information. The evalu-
ation occurs on the data owner’s side, facilitating decentralized
model assessment. Applications include cross-bank model evalua-
tions and government-issued encrypted models for real-time fraud
detection on bank data, without revealing model weights.

UsE CASE 4 (SHARED OUTSOURCED COMPUTATION I). In this use
case, data and model owners send their encrypted data and model,
respectively, to the cloud, outsourcing the entire computation. This
could leverage specialized hardware in the cloud and may reduce costs
due to cloud competition, maintaining privacy through encryption. It
presupposes a non-collusion assumption between the cloud and the
secret key holder (in this case the data owner).

In the event of collusion between the data owner and the cloud,
the cloud could transfer the encrypted model to the data owner for
decryption with their private key, posing a risk of model exposure.
A significant vulnerability in this scenario is the potential for model
compromise due to poor key management by only a single data
owner (of possible many). The main application of this scenario
is the usage of a proprietary Al model of a different company and
outsourcing the computation to the cloud. This scenario is primar-
ily intended for employing proprietary Al models from another
company and outsourcing computational tasks to the cloud.

UsE CASE 5 (SHARED OUTSOURCED COMPUTATION II). This sce-
nario parallels Use Case 4, with the distinction that the model owner
possesses the secret key, necessitating an assumption of non-collusion
between the cloud and the model owner.

This use case facilitates outsourcing both the evaluation process
and evaluation on external data. Only the model owner, holding the
exclusive knowledge of the secret key, can decrypt the evaluation
results. To overcome this limitation controlled randomness (noise)
should be added to the plain evaluation results to mitigate the risk
of key compromise when results are shared with the data owner.

Usk CASE 6 (MurTi PARTY COMPUTATION). The previous men-
tioned use cases can be extended to a multi-party scenario, involving
multiple data owners each encrypting their data with a unique key.

This facilitates the analysis of data across different entities with-
out compromising confidentiality. Such a setup showcases the sig-
nificant advantages of FHE, particularly its capability to outsource
computations on data from diverse sources securely. However, a
notable limitation is the further reduction in computational speed
compared to standard FHE applications.

To conclude FHE enables leveraging the computational power
of the cloud — unregulated and potentially more cost-effective
(including the leveraging of specialized hardware) — without com-
promising the privacy of processed data. FHE facilitates performing

any operation on encrypted data, making it ideal for outsourcing
computations such as:

e Machine learning (including Neuronal Networks, Random
Forests, XGBoost, etc.),

o Basic statistical analyses (such as calculating mean, stan-
dard deviation, ARIMA, etc.), and

e Database queries (like set intersections and more).

It additionally facilitates the provision of encrypted models with-
out disclosing the weights (and the architecture in specific scenarios
- see Use Case 2). Looking ahead, multi-party FHE is poised to be-
come more feasible, enabling the execution of operations on data
from different sources.?

Moreover, all the outlined use cases can be executed in an interac-
tive mode, wherein certain operations are conducted on plaintexts
by the holder of the secret key, thus optimizing computational
resources while maintaining data confidentiality.

Instead of sending FHE-encrypted data, data can be sent to the
cloud encrypted with AES, alongside the AES key encrypted with
FHE. This provided data enables the cloud to replace AES encryp-
tion with FHE encryption, facilitating the execution of homomor-
phic operations on the encrypted data. Notably, during this encryp-
tion substitution, the data remains encrypted at all times (as during
bootstrapping). For a detailed illustration of how transciphering
operates, refer to Figure 1 in the paper by Aharoni et al. [3].

This technique, known as Transciphering, circumvents the need
for direct FHE encryption of all data by requiring only AES en-
cryption of the data. This results in less transferred data because
the expansion ratio of FHE encryption (2:1) is much higher than
with AES encryption (1:1) [3]. The evaluation result is sent back
FHE encrypted to the client. Decrypting FHE-encrypted results is
generally not very resource-intensive, especially since the evalu-
ation outputs (like classification results or aggregated statistics)
are typically small. So Transciphering could allow for significant
outsourcing of most of the FHE encryption process.

%5The bank of the future might securely outsource the complete transaction processing
in an encrypted manner to the cloud. Currently, the primary focus of FHE in the
financial industry is on conducting data analysis using machine learning on financial
data.
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5 CONTRIBUTION

This paper provides foundational knowledge on FHE tailored for be-
ginners. Unlike other surveys on the topic, it emphasizes a practical
and theoretical perspective with easy-to-understand explanations,
avoiding overly simplified or formally incorrect generalizations.

The main contributions of this paper, distinguishing it from
others include:

e A clear distinction between plaintext and ciphertext oper-
ations, adding efficiency and security as key attributes of
homomorphic encryption schemes.

e A concise delineation of i-hop correctness within FHE, en-
hancing understanding.

o A streamlined history of FHE, facilitating a comprehensive
yet succinct comparison across different generations of
FHE.

o The chapter "From SHE to FHE" introduces essential tech-
niques and terms, including all synonymous expressions,
which is novel. This aids in better comprehension during
further literature review.

e In the "Security” chapter, IND-CPA security is formally
defined, and the necessity for noise management is proven.
Moreover, the absence of IND-CCA2 security is not only
formally demonstrated, but its practical implications are
also elucidated.

o The differentiation between key dependent message secu-
rity and circular security presents a new insight offered by
this paper.

e While the issue of incorrect evaluation results was pre-
viously recognized, this survey provides an overview of
techniques to mitigate such attacks.

o It specifically addresses the need for additional signatures
when transferring homomorphically encrypted data, con-
trasting this with the use of traditional transport encryp-
tion.

o A detailed discussion of the limitations of FHE and its posi-
tioning within the cryptographic domain represents a novel
contribution.

Additionally, providing a comprehensive overview of all poten-
tial use cases marks an unprecedented effort in the field.
The comparison between FHE, MPC and TEEs emphasizes the
necessity of benchmarking the actual computational overhead as-
sociated with FHE. This evaluation constitutes the focus of the
subsequent master’s thesis.

Future Work

In the master thesis building upon this paper, an empirical analysis
(benchmarking) of the CKKS scheme’s utility for machine learning
using XGBoost on the Bank Marketing dataset is conducted. The
primary objective is to predict whether a client will subscribe to
a term deposit [23]. The defined use case involves the data owner
also being the model owner, with computational tasks outsourced
to a server that is semi-honest but not trusted, thus eliminating
concerns over incorrect evaluation results in this scenario (see Use
Case 1).

To assess the practicality of this setup, two distinct operational
modes are examined: the "all-in-one" scenario, where a pre-trained

XGBoost model, along with the data, is deployed to the cloud within
a docker container, and the "batched" scenario, in which the model
is maintained in a docker container on the cloud, with data trans-
mitted via S3 buckets.
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A ADDITIONAL INFORMATION
Most active companies in FHE [4, 22]

IBM

Microsoft

Duality Technologies
Zama Al

Cryptolab

Google

Intel

B ADDITIONAL NOTES

Runtime comparison of FHE vs. plaintext computation [11]
Often, the runtime of FHE is compared to plaintext runtimes. A
realistic goal for the future is to achieve homomorphic multiplica-
tion on dedicated hardware at speeds comparable to conventional
multiplication in software on a CPU. However, in some scenar-
ios, comparing with plaintext computations is not meaningful. For
instance, FHE enables financial crime investigation on encrypted
data within minutes, a process that would typically require a ju-
dicial order, taking days to obtain. Furthermore, FHE opens up
unprecedented possibilities. For example, Threshold Multi-key FHE
is expected to facilitate the practical evaluation of data from various,
mutually distrustful sources in the future.

F.P. Paul

FHE vs. use case specific solutions
Sometimes, solutions specific to particular use cases may be more
practical than FHE. The main issue with highly specialized solutions
is often the lack of in-house and industry-wide expertise, along with
the absence of standardization. Nonetheless, before deploying FHE,
the use of well-known techniques should always be evaluated. For
instance, salt could be utilized to compute private set intersections.

Intellectual Property Rights [11]
The Intellectual Property Rights (IPR) situation requires clarifica-
tion. IBM possesses a broad patent on FHE, while Seoul National
University has a patent on CKKS schemes. However, the validity
and scope of these patents remain uncertain. So the selection of an
encryption scheme has to be influenced by considerations related
to Intellectual Property Rights.
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Table 8: Most important HE schemes [17]

Operation BFV [13] BGV[8] CKKS[9] FHEW [12] TFHE [10]
Native Add/Sub . . . o
Native Mult . . . o
SIMD . ° ° (o) (o)
Boolean Logic o . o . .
< 1s Bootstrapping o o o .

Table 9: Most important HE libraries [4, 22]

Library Language Schemes
BGV BFV FHEW TFHE CKKS
HEAAN C++ o ) o o °
2 HElib C++ . ° ° o .
& PALISADE C++ . . . . .
o OpenFHE C++ . . . . .
g Lattigo Go . . o o .
SEAL C++/ C# . . o o .
FHEW C++ o ) . o o
TFHE C++/C o o o . o
concrete Rust o o o . o
RNS-HEAAN C++ o o o o .
FV-NFLILib C++ o . ) o o
CuFHE Cuda/C++ o o o . o
NuFHE Python o ° o ° o
Table 10: Most important HE compilers [22]
Compiler Language Library
HElib SEAL PALISADE FHEW TFHE HEAAN
ALCHEMY Haskell o o o ) o o
Cingulata C++ o ) o ) . o
E3 C++ ) . ° . ° o
SHEEP C++ . . . o . o
EVA C++ o . o o o o
Marble C++ . . o o ) )
RAMPARTS Julia o o . o o o
Transpiler C++ o o . o . o
CHET C++ o . o o o .
nGraph-HE C++ o . o o o o
SEALion C++ o . ) ) o o
HElayers  C++, python API . . . o o .
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Table 11: Homomorphic properties of well-known PHE schemes [1]

Homomorphic Operation

Scheme Year Add Mult security note

RSA 1978 v factoring

Goldwasser and Micali 1982 quadratic residuosity first probabilistic
El-Gamal 1985 v discrete logarithm

Benaloh 1994 higher residuosity

Naccache and Stern 1998 composite residuosity ~ extends benaloh
Okamoto and Uchiyama 1998 p-subgroup assumption improves performance of old schemes
Paillier 1999 vV composite residuosity ~ probablistic
Damgard and Jurik 2001V generalize Paillier
Galbraith 2002V elliptic curves generalize Paillier
Kawachi et al. 2007 lattice problems
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